All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.

Information Report

Category:
## General

Published:

Views: 3 | Pages: 0

Extension: PDF | Download: 0

Share

Related documents

Description

Calculate the support forces, . R 1 = 2500 , R 2 = 7500 lb. The critical location is at the fillet,. M A = 2500 x 12 = 30,000 lb-in. 32 M. 305577. Mc. a =. Calculate the alternating stress,. =. =. I. π d 3. d 3. Determine the stress concentration factor. D. r. = 1.5. = .1.

Transcript

Calculate the support forces, R1= 2500, R2= 7500 lb. The critical location is at the fillet, MA= 2500 x 12 = 30,000 lb-in 32M 305577 Mc a= Calculate the alternating stress, = = I πd 3 d 3 Determine the stress concentration factor D r = 1.5 = .1 Kt = 1.7 d d 10,000 lb. 6˝ 6˝ 12˝ A rotating shaft is carrying 10,000 lb force as shown. The shaft is made of steel withSut = 120 ksi and Sy = 90 ksi. The shaft is rotating at 1150 rpm and has a machine finish surface. Determine the diameter, d, for 75 minutes life. Use safety factor of 1.6 and 50% reliability. d D = 1.5d A R1 R2 r (fillet radius) = .1d m= 0 Design Example Using r = .1and Sut = 120 ksi, q (notch sensitivity) = .85 Csurf = A (Sut)b = 2.7(120)-.265 = .759 0.3 in. < d ≤ 10 in. Csize = .869(d)-0.097 = .869(1)-0.097 = .869 Assume d = 1.0 in Kf= 1 + (Kt – 1)q = 1 + .85(1.7 – 1) = 1.6 Calculate the endurance limit Cload = 1 (pure bending) Crel = 1 (50% rel.) Ctemp= 1 (room temp) Design Example ′ Se = Cload Csize Csurf Ctemp Crel (Se) = (.759)(.869)(.5x120) = 39.57 ksi 39.57 ( ) log ⅓ .9x120 86250 ( ) Sn 39.57 = = 56.5 ksi 106 Sn 56.5 305577 n = a= = .116 < 1.6 = = 305.577 ksi Kfa 1.6x305.577 d 3 So d = 1.0 in. is too small Se ( ) .9Sut log ⅓ Assume d = 2.5 in N ( ) Se Sn = All factors remain the same except the size factor and notch sensitivity. 106 Using r = .25and Sut = 120 ksi, q (notch sensitivity) = .9 Kf= 1 + (Kt – 1)q = 1 + .9(1.7 – 1) = 1.63 Se =36.2 ksi → Design life, N = 1150 x 75 = 86250 cycles Design Example Csize = .869(d)-0.097 = .869(2.5)-0.097 = .795 36.2 ( ) log ⅓ .9x120 86250 ( ) Sn 36.20 = = 53.35 ksi 305577 a= 106 = 19.55 ksi (2.5)3 Sn 53.35 n = = 1.67 ≈ 1.6 = Kfa 1.63x19.55 d=2.5 in. Check yielding Sy 90 n= 2.8 > 1.6 okay = = Kfmax 1.63x19.55 Se =36.2 ksi → Design Example 6˝ 6˝ 12˝ d D = 1.5d A R1 R2 = 7500 Sn r (fillet radius) = .1d 56.5 n = Calculate an approximate diameter = .116 < 1.6 = Kfa 1.6x305.577 Sn 56.5 n = → d = 2.4 in. = = 1.6 So d = 1.0 in. is too small Kfa 1.6x305.577/d 3 Check the location of maximum moment for possible failure So, your next guess should be between 2.25 to 2.5 Mmax (under the load) = 7500 x 6 = 45,000 lb-in Design Example – Observations MA (at the fillet) = 2500 x 12 = 30,000 lb-in But, applying the fatigue stress conc. Factor of 1.63,Kf MA = 1.63x30,000 = 48,900 > 45,000 Fillet r 4 = .16 = 25 d Kt = 1.76 D 35 = = 1.4 d 25 A section of a component is shown. The material is steel with Sut = 620 MPa and a fully corrected endurance limit of Se = 180 MPa. The applied axial load varies from 2,000 to 10,000 N. Use modified Goodman diagram and find the safety factor at the fillet A, groove B and hole C. Which location is likely to fail first? Use Kfm = 1 Pm = (Pmax + Pmin) / 2 = 6000 N Pa = (Pmax – Pmin) / 2 = 4000 N Example Calculate the alternating and the mean stresses, Pa 4000 a= 1.65 = 52.8 MPa Kf = A 25x5 Pm 6000 m= = 48 MPa = A 25x5 Fatigue design equation a m 1 Infinite life = + 1 n Sut 52.8 48 Se n = 2.7 → = + n 180 620 Using r = 4and Sut = 620 MPa, q (notch sensitivity) = .85 Kf= 1 + (Kt – 1)q = 1 + .85(1.76 – 1) = 1.65 Example d 5 → Kt= 2.6 = = .143 w 35 Using r = 2.5and Sut = 620 MPa, q (notch sensitivity) = .82 Calculate the alternating and the mean stresses, Pm 6000 m= = 40 MPa = A 30x5 Pa 4000 a= 2.3 = 61.33 MPa Kf = A (35-5)5 1 61.33 40 n = 2.5 → = + n 180 620 Hole Kf= 1 + (Kt – 1)q = 1 + .82(2.6 – 1) = 2.3 Example Using r = 3and Sut = 620 MPa, q (notch sensitivity) = .83 Calculate the alternating and the mean stresses, Pm 6000 m= = 41.4 MPa = A 29x5 Pa 4000 a= 2.1 = 58.0 MPa Kf = A (35-6)5 1 58.0 41.4 n = 2.57 → = + n 180 620 Groove r 3 = .103 = 29 d → Kt= 2.33 D 35 = = 1.2 d 29 Kf= 1 + (Kt – 1)q = 1 + .83(2.33 – 1) = 2.1 Example The part is likely to fail at the hole, has the lowest safety factor Fa= (Fmax – Fmin) / 2=7.5 lb. Fm= (Fmax + Fmin) / 2=22.5 lb. Ma=7.5 x 16 = 120 in - lb Mm=22.5 x 16 = 360 in - lb 32Ma 32(120) Mc a= = = 23178.6 psi = I πd 3 π(.375)3 32Mm 32(360) Mc m= = 69536 psi = = I πd 3 π(.375)3 The figure shows a formed round wire cantilever spring subjected to a varying force F. The wire is made of steel with Sut = 150 ksi. The mounting detail is such that the stress concentration could be neglected. A visual inspection of the spring indicates that the surface finish corresponds closely to a hot-rolled finish. For a reliability of 99%, what number of load applications is likely to cause failure. Example MAE dept., SJSU A95= .010462d 2 (non-rotating round section) dequiv= √ A95 / .0766 = .37d = .37 x.375 = .14 1 23178.6 69536 n = .7< 1 → a → m = + 1 n 24077 150000 = + Finite life n Sut Se Find Sn, strength for finite number of cycle a m 23178.6 69536 Sn = 43207 psi → 1 → = 1 + = + Sut Sn Sn 150000 Calculate the endurance limit Csurf = A (Sut)b = 14.4(150)-.718 = .394 Cload = 1 (pure bending) Ctemp= 1 (room temp) Crel= .814 (99% reliability) dequiv= .14 < .3 → Csize = 1.0 Se = Cload Csize Csurf Ctemp Crel (Se) = (.394)(.814)(.5x150) = 24.077 ksi Example 24.077 ( ) log ⅓ .9x150 N ( ) 24077 = → 43207 106 Se ( ) .9Sut log ⅓ N ( ) Se Sn = 106 N = 96,000 cycles Example

Recommended

7 pages

9 pages

17 pages

13 pages

15 pages

42 pages

139 pages

Related Search

We Need Your Support

Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks