ASM Handbook. Volume 13A Corrosion: Fundamentals, Testing, and Protection. Prepared under the direction of the ASM International Handbook Committee

Please download to get full document.

View again

of 15
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Sheet Music

Published:

Views: 2 | Pages: 15

Extension: PDF | Download: 0

Share
Related documents
Description
ASM Handbook Volume 13A Corrosion: Fundamentals, Testing, and Protection Prepared under the direction of the ASM International Handbook Committee Stephen D. Cramer and Bernard S. Covino, Jr., Volume Editors
Transcript
ASM Handbook Volume 13A Corrosion: Fundamentals, Testing, and Protection Prepared under the direction of the ASM International Handbook Committee Stephen D. Cramer and Bernard S. Covino, Jr., Volume Editors Charles Moosbrugger, Project Editor Bonnie R. Sanders, Manager of Production Gayle J. Anton, Editorial Assistant Nancy Hrivnak, Jill Kinson, and Carol Polakowski, Production Editors Kathryn Muldoon, Production Assistant Scott D. Henry, Assistant Director of Technical Publications William W. Scott, Jr., Director of Technical Publications Editorial Assistance Elizabeth Marquard Heather Lampman Mary Jane Riddlebaugh Beverly Musgrove Materials Park, Ohio Copyright 2003 by ASM International All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner. First printing, October 2003 This book is a collective effort involving hundreds of technical specialists. It brings together a wealth of information from worldwide sources to help scientists, engineers, and technicians solve current and long-range problems. Great care is taken in the compilation and production of this Volume, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM s control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPE- CIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLI- GENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended. Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement. Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International. Library of Congress Cataloging-in-Publication Data ASM International ASM Handbook Includes bibliographical references and indexes Contents: v.1. Properties and selection irons, steels, and high-performance alloys v.2. Properties and selection nonferrous alloys and special-purpose materials [etc.] v.21. Composites 1. Metals Handbooks, manuals, etc. 2. Metal-work Handbooks, manuals, etc. I. ASM International. Handbook Committee. II. Metals Handbook. TA459.M SAN: ISBN: ASM International Materials Park, OH Printed in the United States of America Multiple copy reprints of individual articles are available from Technical Department, ASM International. Foreword ASM International is pleased to publish ASM Handbook, Volume 13A, Corrosion: Fundamentals, Testing, and Protection, the first book in a two-volume revision of the landmark 1987 Metals Handbook, 9th Edition volume on corrosion. ASM Handbook, Volume 13A has been completely revised and updated to address the needs of ASM International members and the global technical community for current and comprehensive information on corrosion principles, evaluation techniques, and protection methods. Advances in material science and corrosion technologies since the 1987 Corrosion volume was published have lessened some of the costs and degradation caused by corrosion. However, the systems that society relies on have increased in complexity during this time, so corrosion can have more far-reaching effects. Corrosion remains a multibillion-dollar problem that confronts nearly every engineer in every industry. ASM International is indebted to the Co-Chairs and Editors of this Handbook, Stephen D. Cramer and Bernard S. Covino, Jr., who had the vision and the drive to undertake the huge effort to update and revise the 1987 Corrosion volume. ASM Handbook, Volume 13A is the first fruit of their efforts; they are also leading the project to complete ASM Handbook, Volume 13B, Corrosion: Materials, Environments, and Industries, scheduled to publish in The Editors have done an outstanding job in organizing the project, in recruiting renowned experts to oversee sections and to write or revise articles, and in reviewing every manuscript. We are pleased with their vision to recruit authors from Canada, Mexico, France, Germany, United Kingdom, Poland, Japan, India, and Australia, as well as from the United States. This diverse community of volunteers, sharing their knowledge and experience, make this Volume truly an international effort. We thank the authors and reviewers of the 1987 Corrosion volume, which at the time was the largest, most comprehensive volume on a single topic ever published by ASM. This new edition builds upon that groundbreaking project. Thanks also go to the ASM Handbook Committee for their oversight and involvement, and to the ASM editorial staff for their tireless efforts. We are especially grateful to the nearly 200 authors and reviewers listed in the next several pages. Their willingness to invest their time and effort and to share their knowledge and experience by writing, rewriting, and reviewing articles has made this Handbook an outstanding source of information. Donald R. Muzyka President ASM International Stanley C. Theobald Managing Director ASM International iii Policy on Units of Measure By a resolution of its Board of Trustees, ASM International has adopted the practice of publishing data in both metric and customary U.S. units of measure. In preparing this Handbook, the editors have attempted to present data in metric units based primarily on Système International d Unités (SI), with secondary mention of the corresponding values in customary U.S. units. The decision to use SI as the primary system of units was based on the aforementioned resolution of the Board of Trustees and the widespread use of metric units throughout the world. For the most part, numerical engineering data in the text and in tables are presented in SI-based units with the customary U.S. equivalents in parentheses (text) or adjoining columns (tables). For example, pressure, stress, and strength are shown both in SI units, which are pascals (Pa) with a suitable prefix, and in customary U.S. units, which are pounds per square inch (psi). To save space, large values of psi have been converted to kips per square inch (ksi), where 1 ksi 1000 psi. The metric tonne (kg 10 3 ) has sometimes been shown in megagrams (Mg). Some strictly scientific data are presented in SI units only. To clarify some illustrations, only one set of units is presented on artwork. References in the accompanying text to data in the illustrations are presented in both SI-based and customary U.S. units. On graphs and charts, grids corresponding to SI-based units usually appear along the left and bottom edges. Where appropriate, corresponding customary U.S. units appear along the top and right edges. Data pertaining to a specification published by a specification-writing group may be given in only the units used in that specification or in dual units, depending on the nature of the data. For example, the typical yield strength of steel sheet made to a specification written in customary U.S. units would be presented in dual units, but the sheet thickness specified in that specification might be presented only in inches. Data obtained according to standardized test methods for which the standard recommends a particular system of units are presented in the units of that system. Wherever feasible, equivalent units are also presented. Some statistical data may also be presented in only the original units used in the analysis. Conversions and rounding have been done in accordance with IEEE/ ASTM SI-10, with attention given to the number of significant digits in the original data. For example, an annealing temperature of 1570 F contains three significant digits. In this case, the equivalent temperature would be given as 855 C; the exact conversion to C would not be appropriate. For an invariant physical phenomenon that occurs at a precise temperature (such as the melting of pure silver), it would be appropriate to report the temperature as C or F. In some instances (especially in tables and data compilations), temperature values in C and F are alternatives rather than conversions. The policy of units of measure in this Handbook contains several exceptions to strict conformance to IEEE/ASTM SI-10; in each instance, the exception has been made in an effort to improve the clarity of the Handbook. The most notable exception is the use of g/cm 3 rather than kg/m 3 as the unit of measure for density (mass per unit volume). SI practice requires that only one virgule (diagonal) appear in units formed by combination of several basic units. Therefore, all of the units preceding the virgule are in the numerator and all units following the virgule are in the denominator of the expression; no parentheses are required to prevent ambiguity. iv Preface The direct cost of corrosion in the United States was estimated to be $276 billion annually for 1998, or 3.1% of the 1998 U.S. gross domestic product of $8.79 trillion (Ref 1). Of the industry sectors analyzed, utilities and transportation experienced the largest costs. The largest investment in corrosion control and protection strategies was in protective organic coatings. Indirect costs of corrosion, including lost productivity and corrosionrelated overhead and taxes, when averaged over industry sectors, were roughly equal to or greater than the direct costs. In some cases they were substantially greater. For example, indirect corrosion costs related to the U.S. bridge infrastructure were estimated to be more than 10 times the $8.3 billion direct cost from bridge corrosion damage. Additional information is available in the article Direct Costs of Corrosion in the United States in this Volume. ASM Handbook, Volume 13A, Corrosion: Fundamentals, Testing, and Protection, is the first volume in a two-volume update, revision, and expansion of Corrosion, Volume 13 of the ninth edition Metals Handbook, published in The second volume ASM Handbook, Volume 13B, Corrosion: Materials, Environments, and Industries is to be published in The purpose of these two volumes is to represent the current state of knowledge in the field of corrosion and to provide a perspective on future trends in the field. Metals remain the major focus of the Handbook, but nonmetallic materials occupy a more prominent position that reflects their wide and effective use to solve problems of corrosion. Wet or aqueous corrosion remains the major focus, but dry or gaseous corrosion is discussed more fully, reflecting the increased importance of processes at elevated and high temperatures. ASM Handbook, Volume 13A recognizes the global nature of corrosion research and practice and the international level of corrosion activities and interactions required to provide cost-effective, safe, and environmentally sound solutions to materials problems in chemically aggressive environments. Twenty percent of the articles in Volume 13A did not appear in the 1987 Handbook. Authors from more than ten countries have contributed to Volume 13A. The table of contents has been translated into Spanish, French, Russian, Japanese, and Chinese to make the Handbook accessible to a diverse audience. Extensive references provide a road map to the corrosion literature and are augmented by Selected References that are a source of additional information. Information technology has changed dramatically since 1987, and the most significant occurrence has been the development of the Internet as an information resource. In response, ASM International has made the contents of this Handbook and others in the ASM Handbook series available on the Web. This Handbook also provides a list, current at the time of publication, of significant data sources and of major national, international, academic, and government corrosion organizations and institutions that are accessible on the Web. Corrosion is described by well-known laws of thermodynamics, kinetics, and electrochemistry. The many variables that influence the behavior of a material in its environment can lead to a wide and complex range of performance, from the benign to the catastrophic. Understanding and avoiding detrimental corrosion is an interdisciplinary effort requiring knowledge of chemistry, electrochemistry, materials, engineering, and structures. All applications of engineered materials pivot on the fulcrum between environmental degradation, of which corrosion is a major element, and service or service life, with cost determining the point of balance. Costs are determined not in the spare confines of a material and its environment but in a complex landscape defined by technical, economic, social, environmental, health, safety, legal, and consumer constraints. This is illustrated by the experience of a Portland, OR Water Bureau engineer working to make way for a new light rail line along city streets (Ref 2):... Construction conflicts are anticipated..., but day-to-day construction also alters the original design and corrosion control scheme of existing installations. As development occurs and utilities weave and cross, coatings are damaged, pipes are shorted, wires are cut, and test stations always seem to disappear... Work had to be sequenced and paced to minimize traffic interference... Environmental regulators were classifying the pavement as an engineered cap for brownfield and other contaminated areas... Utilities responded by characterizing the roadway as a constantly opening and closing zipper because we continually construct there... Corrosion control methods for urban areas must be designed for installation and operation in a congested environment that is constantly changing. This Handbook is organized into six major sections addressing corrosion fundamentals, testing, and protection. The first Section, Fundamentals of Corrosion, covers the theory of aqueous and gaseous corrosion from the thermodynamic and kinetic perspectives. It presents the principles of electrochemistry, the mechanisms of corrosion processes, and the methods for measuring corrosion rates in aqueous, molten salt, liquid metals, and gaseous environments. It introduces geochemical modeling as a means for characterizing and understanding corrosion in complex environments. While corrosion is usually associated with the environmental degradation of a material, this Section also describes ways in which corrosion is used for constructive or beneficial purposes. The second Section, Forms of Corrosion, describes how to recognize the different types of corrosion and the forces that influence them. It addresses uniform corrosion, localized corrosion, metallurgically influenced corrosion, mechanically assisted corrosion, environmentally induced cracking, and microbiologically influenced corrosion. The Section introduces the complex processes of wear-corrosion interactions that accelerate material deterioration at rates greater than those resulting from wear processes or corrosion processes alone. The third Section, Corrosion Testing and Evaluation, describes the planning of corrosion tests, evaluation of test results, laboratory corrosion testing, simulated service testing, and in-service techniques for damage detection and monitoring. It concludes by describing standard methods and practices for evaluating the various forms of corrosion. The fourth Section, Methods of Corrosion Protection, begins by discussing as a baseline the corrosion resistance of bulk materials. The Section continues with methods of corrosion protection, including surface treatments and conversion coatings, ceramic, glass and oxide coatings, metal coatings, coatings and linings, electrochemical corrosion control methods, and corrosion inhibitors. The fifth Section, Designing for Corrosion Control and Prevention, continues the theme of the fourth Section from the perspective of materials v selection and equipment design. Corrosion control is an economic process as well as a technical process, and this Section discusses corrosion economic calculations, predictive modeling for structure service life, and a review of corrosion costs in the United States. The sixth Section, Tools for the Corrosionist, covers topics that are complementary to corrosion fundamentals, testing, and protection. It is a new addition to the Handbook. The topics include conventions and definitions in corrosion and oxidation, applications of modern analytical instruments in corrosion, materials science, statistics, and information sources and databases. Other useful Handbook contents include the Glossary of Terms, containing definitions of corrosion, electrochemistry, and materials terms common to corrosion and defined in the literature of ISO, ASTM, and NACE International. The Corrosion Rate Conversion Section includes conversions in both nomograph and tabular form. The metric conversion guide features conversion factors for common units and includes SI prefixes. Finally, Abbreviations and Symbols provides a key to common acronyms, abbreviations, and symbols. The six Sections in the Handbook are divided into several subsections. These subsections were organized and written under the leadership of the following individuals (listed in alphabetical order): Chairperson Vinod S. Agarwala Rudolph G. Buchheit Bernard S. Covino, Jr. Bruce D. Craig Stephen D. Cramer Marek Danielewski Stephen C. Dexter Peter Elliott Gerald Frankel William A. Glaeser Russell D. Kane Carl E. Locke, Jr. Philippe Marcus Paul M. Natishan Bopinder S. Phull Vilupanur A. Ravi Pierre R. Roberge John R. Scully Susan Smialowska Kenneth B. Tator Peter F. Tortorelli Ian Wright Margaret Ziomek-Moroz Subsection Title In-Service Techniques for Damage Detection and Monitoring Surface Treatments and Conversion Coatings Laboratory Corrosion Testing Environmentally Induced Cracking Simulated Service Testing Metal Coatings Corrosion Inhibitors Tools for the Corrosionist Fundamentals of Gaseous Corrosion Microbiologically Influenced Corrosion Designing for Corrosion Control and Protection Metallurgically Influenced Corrosion Mechanically Assisted Degradation Uniform Corrosion Electrochemical Corrosion Control Methods Fundamentals of Corrosion Thermodynamics Corrosion Resistance of Bulk Materials Evaluating Forms of Corrosion Ceramic, Glass, and Oxide Coatings Planning Corrosion Tests and Evaluating Results Fundamentals of Aqueous Corrosion Kinetics Localized Corrosion Coatings and Linings Fundamentals Applied to Specific Environments Mechanically Assisted Degradation Fundamentals of Corrosion for Constructive Purposes These talented and dedicated individuals generously devoted considerable time to the preparation of this Handbook. They were joined
Recommended
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks