9702_w11_qp_43

Please download to get full document.

View again

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 52 | Pages: 24

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 5 7 1 9 1 3 3 1 8 4 * PHYSICS 9702/43 Paper 4 A2 Structured…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 5 7 1 9 1 3 3 1 8 4 * PHYSICS 9702/43 Paper 4 A2 Structured Questions October/November 2011 2 hours Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. For Examiner’s Use Answer all questions. You may lose marks if you do not show your working or if you do not use 1 appropriate units. 2 At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part 3 question. 4 5 6 7 8 9 10 11 12 Total This document consists of 21 printed pages and 3 blank pages. DC (NF/JG) 34901/4 © UCLES 2011 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K –1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2011 9702/43/O/N/11 3 Formulae uniformly accelerated motion, s = ut +  at 2 v 2 = u 2 + 2as work done on/by a gas, W = p ⌬V Gm gravitational potential, φ =– r hydrostatic pressure, p = ρgh Nm 2 pressure of an ideal gas, p =  V c simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω √⎯(x⎯ 0⎯ 2 ⎯ –⎯ x⎯ ⎯ 2⎯ ) Q electric potential, V = 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W =  QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ω t radioactive decay, x = x0 exp(– λt ) 0.693 decay constant, λ = t  © UCLES 2011 9702/43/O/N/11 [Turn over 4 Section A For Examiner’s Answer all the questions in the spaces provided. Use 1 The planet Mars may be considered to be an isolated sphere of diameter 6.79 × 106 m with its mass of 6.42 × 1023 kg concentrated at its centre. A rock of mass 1.40 kg rests on the surface of Mars. For this rock, (a) (i) determine its weight, weight = ............................................ N [3] (ii) show that its gravitational potential energy is –1.77 × 107 J. [2] (b) Use the information in (a)(ii) to determine the speed at which the rock must leave the surface of Mars so that it will escape the gravitational attraction of the planet. speed = ....................................... m s–1 [3] © UCLES 2011 9702/43/O/N/11 5 (c) The mean translational kinetic energy EK of a molecule of an ideal gas is given by the For expression Examiner’s Use EK = 32 kT where T is the thermodynamic temperature of the gas and k is the Boltzmann constant. (i) Determine the temperature at which the root-mean-square (r.m.s.) speed of hydrogen molecules is equal to the speed calculated in (b). Hydrogen may be assumed to be an ideal gas. A molecule of hydrogen has a mass of 2 u. temperature = ............................................. K [2] (ii) State and explain one reason why hydrogen molecules may escape from Mars at temperatures below that calculated in (i). .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2011 9702/43/O/N/11 [Turn over 6 2 (a) A resistance thermometer and a thermocouple thermometer are both used at the same For time to measure the temperature of a water bath. Examiner’s Use Explain why, although both thermometers have been calibrated correctly and are at equilibrium, they may record different temperatures. .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [2] (b) State (i) in what way the absolute scale of temperature differs from other temperature scales, .................................................................................................................................. ............................................................................................................................. [1] (ii) what is meant by the absolute zero of temperature. .................................................................................................................................. ............................................................................................................................. [1] (c) The temperature of a water bath increases from 50.00 °C to 80.00 °C. Determine, in kelvin and to an appropriate number of significant figures, (i) the temperature 50.00 °C, temperature = ............................................. K [1] (ii) the change in temperature of the water bath. temperature change = ............................................. K [1] © UCLES 2011 9702/43/O/N/11 7 3 (a) Define simple harmonic motion. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ..................................................................................................................................... [2] (b) A horizontal plate is vibrating vertically, as shown in Fig. 3.1. cube, mass 5.8 g plate vertical oscillations frequency 4.5 Hz Fig. 3.1 The plate undergoes simple harmonic motion with a frequency of 4.5 Hz and amplitude 3.0 mm. A metal cube of mass 5.8 g rests on the plate. Calculate, for the cube, the energy of oscillation. energy = ............................................. J [3] (c) The amplitude of oscillation of the plate in (b) is gradually increased. The frequency remains constant. At one particular amplitude, the cube just loses contact momentarily with the plate. (i) State the position of the plate in its oscillation at the point when the cube loses contact. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2011 9702/43/O/N/11 [Turn over 8 (ii) Calculate this amplitude of oscillation. For Examiner’s Use amplitude = ............................................ m [2] © UCLES 2011 9702/43/O/N/11 9 4 (a) State two functions of capacitors in electrical circuits. For Examiner’s 1. ...................................................................................................................................... Use .......................................................................................................................................... 2. ...................................................................................................................................... .......................................................................................................................................... [2] (b) Three uncharged capacitors of capacitance C1, C2 and C3 are connected in series, as shown in Fig. 4.1. plate A C1 C2 C3 Fig. 4.1 A charge of +Q is put on plate A of the capacitor of capacitance C1. (i) State and explain the charges that will be observed on the other plates of the capacitors. You may draw on Fig. 4.1 if you wish. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) Use your answer in (i) to derive an expression for the combined capacitance of the capacitors. [2] © UCLES 2011 9702/43/O/N/11 [Turn over 10 (c) A capacitor of capacitance 12 μF is charged using a battery of e.m.f. 9.0 V, as shown in For Fig. 4.2. Examiner’s Use S1 S2 12 μF 20 μF 9.0 V Fig. 4.2 Switch S1 is closed and switch S2 is open. (i) The capacitor is now disconnected from the battery by opening S1. Calculate the energy stored in the capacitor. energy = ............................................. J [2] (ii) The 12 μF capacitor is now connected to an uncharged capacitor of capacitance 20 μF by closing S2. Switch S1 remains open. The total energy now stored in the two capacitors is 1.82 × 10–4 J. Suggest why this value is different from your answer in (i). .................................................................................................................................. ............................................................................................................................. [1] © UCLES 2011 9702/43/O/N/11 11 5 The components for a bridge rectifier are shown in Fig. 5.1. For Examiner’s Use supply load Fig. 5.1 (a) Complete the circuit of Fig. 5.1 by showing the connections of the supply and of the load to the diodes. [2] (b) Suggest one advantage of the use of a bridge rectifier, rather than a single diode, for the rectification of alternating current. .......................................................................................................................................... ..................................................................................................................................... [1] (c) State (i) what is meant by smoothing, .................................................................................................................................. ............................................................................................................................. [1] (ii) the effect of the value of the capacitance of the smoothing capacitor in relation to smoothing. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2011 9702/43/O/N/11 [Turn over 12 6 (a) Define the tesla. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [3] (b) A charged particle of mass m and charge +q is travelling with velocity v in a vacuum. It enters a region of uniform magnetic field of flux density B as shown in Fig. 6.1. particle mass m, charge +q uniform magnetic field flux density B Fig. 6.1 The magnetic field is normal to the direction of motion of the particle. The path of the particle in the field is the arc of a circle of radius r. (i) Explain why the path of the particle in the field is the arc of a circle. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) Show that the radius r is given by the expression r = mv . Bq [1] © UCLES 2011 9702/43/O/N/11 13 (c) A uniform magnetic field is produced in the region PQRS, as shown in Fig. 6.2. For Examiner’s Use P Q X uniform magnetic field S R Fig. 6.2 The magnetic field is normal to the page. At point X, a gamma-ray photon interaction causes two particles to be formed. The paths of these particles are shown in Fig. 6.2. (i) Suggest, with a reason, why each of the paths is a spiral, rather than the arc of a circle. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) State and explain what can be deduced from the paths about 1. the charges on the two particles, .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] 2. the initial speeds of the two particles. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2011 9702/43/O/N/11 [Turn over 14 7 An explanation of the photoelectric effect includes the terms photon energy and work function For energy. Examiner’s Use (a) Explain what is meant by (i) a photon, .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) work function energy. .................................................................................................................................. ............................................................................................................................. [1] (b) In an experiment to investigate the photoelectric effect, a student measures the wavelength λ of the light incident on a metal surface and the maximum kinetic energy 1 Emax of the emitted electrons. The variation with Emax of is shown in Fig. 7.1. λ 4 1 106 m–1 λ / 3 2 1 0 –4 –3 –2 –1 0 1 2 3 4 –19 Emax / 10 J Fig. 7.1 (i) The work function energy of the metal surface is Φ. State an equation, in terms of λ, Φ and Emax, to represent conservation of energy for the photoelectric effect. Explain any other symbols you use. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2011 9702/43/O/N/11 15 (ii) Use your answer in (i) and Fig. 7.1 to determine For Examiner’s 1. the work function energy Φ of the metal surface, Use Φ = ............................................. J [2] 2. a value for the Planck constant. Planck constant = ........................................... J s [3] © UCLES 2011 9702/43/O/N/11 [Turn over 16 8 Radon-222 is a radioactive element having a half-life of 3.82 days. For Examiner’s Radon-222, when found in atmospheric air, can present a health hazard. Safety measures Use should be taken when the activity of radon-222 exceeds 200 Bq per cubic metre of air. (a) (i) Define radioactive decay constant. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) Show that the decay constant of radon-222 is 2.1 × 10–6 s–1. [1] (b) A volume of 1.0 m3 of atmospheric air contains 2.5 × 1025 molecules. Calculate the ratio number of air molecules in 1.0 m3 of atmospheric air number of radon-222 atoms in 1.0 m3 of atmospheric air for the minimum activity of radon-222 at which safety measures should be taken. ratio = ................................................. [3] © UCLES 2011 9702/43/O/N/11 17 BLANK PAGE Please turn over for Section B. © UCLES 2011 9702/43/O/N/11 [Turn over 18 Section B For Examiner’s Answer all the questions in the spaces provided. Use 9 (a) The resistance of a light-dependent resistor (LDR) is approximately 500 Ω in daylight. Suggest an approximate value for the resistance of the LDR in darkness. resistance = ............................................ Ω [1] (b) An electronic light-meter is used to warn when light intensity becomes low. A light-dependent resistor is connected into the circuit of Fig. 9.1. +4.5 V 1.7 kΩ +9 V – +2.5 V P + R R –9 V red green Fig. 9.1 The operational amplifier (op-amp) is ideal. The resistors R are to ensure that the light-emitting diodes (LEDs) do not over-heat. (i) On Fig. 9.1, mark the polarity of the point P for the red LED to be emitting light. [1] (ii) The LDR is in daylight and has a resistance of 500 Ω. State and explain which diode, red or green, will be emitting light. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [3] (iii) The intensity of the light decreases and the LDR is in darkness. State and explain the effect on the LEDs of this change in intensity. ................
Recommended
9702_w11_er

9702_w11_er

62 pages

9702_w11_qp_35

9702_w11_qp_35

12 pages

9702_w11_qp_34

9702_w11_qp_34

12 pages

9702_w11_qp_36

9702_w11_qp_36

12 pages

9702_w11_qp_41

9702_w11_qp_41

24 pages

9702_w11_qp_42

9702_w11_qp_42

24 pages

9702_w11_qp_51

9702_w11_qp_51

8 pages

9702_w11_qp_52

9702_w11_qp_52

8 pages

9702_w11_qp_11

9702_w11_qp_11

28 pages

9702_w11_qp_12

9702_w11_qp_12

24 pages

9702_w11_qp_53

9702_w11_qp_53

8 pages

9702_w11_qp_13

9702_w11_qp_13

28 pages

9702_w11_qp_21

9702_w11_qp_21

16 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks