9702_w11_qp_41

Please download to get full document.

View again

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 12 | Pages: 24

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 0 0 2 6 3 7 9 4 7 8 * PHYSICS 9702/41 Paper 4 A2 Structured…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 0 0 2 6 3 7 9 4 7 8 * PHYSICS 9702/41 Paper 4 A2 Structured Questions October/November 2011 2 hours Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. You may lose marks if you do not show your working or if you do not use For Examiner’s Use appropriate units. 1 At the end of the examination, fasten all your work securely together. 2 The number of marks is given in brackets [ ] at the end of each question or part question. 3 4 5 6 7 8 9 10 11 Total This document consists of 24 printed pages. DC (SM/CGW) 34889/5 © UCLES 2011 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K –1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2011 9702/41/O/N/11 3 Formulae uniformly accelerated motion, s = ut +  at 2 v 2 = u 2 + 2as work done on/by a gas, W = p ⌬V Gm gravitational potential, φ =– r hydrostatic pressure, p = ρgh Nm 2 pressure of an ideal gas, p =  V c simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω √⎯(x⎯ 0⎯ 2 ⎯ –⎯ x⎯ ⎯ 2⎯ ) Q electric potential, V = 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W =  QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ω t radioactive decay, x = x0 exp(– λt ) 0.693 decay constant, λ = t  © UCLES 2011 9702/41/O/N/11 [Turn over 4 Section A For Examiner’s Answer all the questions in the spaces provided. Use 1 (a) A moon is in a circular orbit of radius r about a planet. The angular speed of the moon in its orbit is ω. The planet and its moon may be considered to be point masses that are isolated in space. Show that r and ω are related by the expression r 3ω 2 = constant. Explain your working. [3] (b) Phobos and Deimos are moons that are in circular orbits about the planet Mars. Data for Phobos and Deimos are shown in Fig. 1.1. period of rotation radius of orbit moon about Mars /m / hours Phobos 9.39 × 106 7.65 Deimos 1.99 × 107 Fig. 1.1 © UCLES 2011 9702/41/O/N/11 5 (i) Use data from Fig. 1.1 to determine For Examiner’s 1. the mass of Mars, Use mass = ............................................ kg [3] 2. the period of Deimos in its orbit about Mars. period = ...................................... hours [3] (ii) The period of rotation of Mars about its axis is 24.6 hours. Deimos is in an equatorial orbit, orbiting in the same direction as the spin of Mars about its axis. Use your answer in (i) to comment on the orbit of Deimos. .................................................................................................................................. .............................................................................................................................. [1] © UCLES 2011 9702/41/O/N/11 [Turn over 6 2 (a) One assumption of the kinetic theory of gases is that gas molecules behave as if they For are hard, elastic identical spheres. Examiner’s Use State two other assumptions of the kinetic theory of gases. 1. ...................................................................................................................................... .......................................................................................................................................... 2. ...................................................................................................................................... .......................................................................................................................................... [2] (b) Using the kinetic theory of gases, it can be shown that the product of the pressure p and the volume V of an ideal gas is given by the expression pV = 13 Nm c 2 where m is the mass of a gas molecule. (i) State the meaning of the symbol 1. N, .............................................................................................................................. [1] 2. c 2 . .............................................................................................................................. [1] (ii) Use the expression to deduce that the mean kinetic energy EK of a gas molecule at temperature T is given by the equation EK = 32 kT where k is a constant. [2] © UCLES 2011 9702/41/O/N/11 7 (c) (i) State what is meant by the internal energy of a substance. For Examiner’s .................................................................................................................................. Use .................................................................................................................................. .............................................................................................................................. [2] (ii) Use the equation in (b)(ii) to explain that, for an ideal gas, a change in internal energy ΔU is given by ΔU ∝ ΔT where ΔT is the change in temperature of the gas. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2011 9702/41/O/N/11 [Turn over 8 3 A bar magnet is suspended from the free end of a helical spring, as illustrated in Fig. 3.1. For Examiner’s Use helical spring magnet coil Fig. 3.1 One pole of the magnet is situated in a coil of wire. The coil is connected in series with a switch and a resistor. The switch is open. The magnet is displaced vertically and then released. As the magnet passes through its rest position, a timer is started. The variation with time t of the vertical displacement y of the magnet from its rest position is shown in Fig. 3.2. 2.0 y / cm 1.0 0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 t /s –1.0 –2.0 Fig. 3.2 At time t = 4.0 s, the switch is closed. © UCLES 2011 9702/41/O/N/11 9 (a) Use Fig. 3.2 to For Examiner’s (i) state the evidence for the magnet to be undergoing free oscillations during the Use period t = 0 to t = 4.0 s, .................................................................................................................................. .............................................................................................................................. [1] (ii) state, with a reason, whether the damping after time t = 4.0 s is light, critical or heavy, .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (iii) determine the natural frequency of vibration of the magnet on the spring. frequency = ........................................... Hz [2] (b) (i) State Faraday’s law of electromagnetic induction. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) Explain why, after time t = 4.0 s, the amplitude of vibration of the magnet is seen to decrease. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [4] © UCLES 2011 9702/41/O/N/11 [Turn over 10 4 Two small charged metal spheres A and B are situated in a vacuum. The distance between For the centres of the spheres is 12.0 cm, as shown in Fig. 4.1. Examiner’s Use 12.0 cm sphere A P sphere B x Fig. 4.1 (not to scale) The charge on each sphere may be assumed to be a point charge at the centre of the sphere. Point P is a movable point that lies on the line joining the centres of the spheres and is distance x from the centre of sphere A. The variation with distance x of the electric field strength E at point P is shown in Fig. 4.2. 150 E / 106 N C–1 100 50 0 0 2 4 6 8 10 12 x / cm –50 –100 –150 –200 Fig. 4.2 © UCLES 2011 9702/41/O/N/11 11 (a) State the evidence provided by Fig. 4.2 for the statements that For Examiner’s (i) the spheres are conductors, Use .................................................................................................................................. .............................................................................................................................. [1] (ii) the charges on the spheres are either both positive or both negative. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (b) (i) State the relation between electric field strength E and potential gradient at a point. .................................................................................................................................. .............................................................................................................................. [1] (ii) Use Fig. 4.2 to state and explain the distance x at which the rate of change of potential with distance is 1. maximum, .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] 2. minimum. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2011 9702/41/O/N/11 [Turn over 12 5 Positively charged particles are travelling in a vacuum through three narrow slits S1, S2 and For S3, as shown in Fig. 5.1. Examiner’s Use S1 S2 S3 beam of charged particles direction of electric field Fig. 5.1 Each particle has speed v and charge q. There is a uniform magnetic field of flux density B and a uniform electric field of field strength E in the region between the slits S2 and S3. (a) State the expression for the force F acting on a charged particle due to (i) the magnetic field, .............................................................................................................................. [1] (ii) the electric field. .............................................................................................................................. [1] (b) The electric field acts downwards in the plane of the paper, as shown in Fig. 5.1. State and explain the direction of the magnetic field so that the positively charged particles may pass undeviated through the region between slits S2 and S3. .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] © UCLES 2011 9702/41/O/N/11 13 6 The variation with time t of the output V of an alternating voltage supply of frequency 50 Hz For is shown in Fig. 6.1. Examiner’s Use 20 V/V 15 10 5 0 0 t1 t / ms –5 –10 –15 –20 Fig. 6.1 (a) Use Fig. 6.1 to state (i) the time t1, t1 = ............................................ s [2] (ii) the peak value V0 of the voltage, V0 = ............................................. V [1] (iii) the root-mean-square voltage Vrms, Vrms = .............................................. V [1] (iv) the mean voltage V . V = .............................................. V [1] © UCLES 2011 9702/41/O/N/11 [Turn over 14 (b) The alternating supply is connected in series with a resistor of resistance 2.4 Ω. For Calculate the mean power dissipated in the resistor. Examiner’s Use power = ............................................. W [2] © UCLES 2011 9702/41/O/N/11 15 7 (a) Explain how the line spectrum of hydrogen provides evidence for the existence of For discrete electron energy levels in atoms. Examiner’s Use .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [3] (b) Some electron energy levels in atomic hydrogen are illustrated in Fig. 7.1. –0.85 eV –1.50 eV energy A B –3.40 eV Fig. 7.1 Two possible electron transitions A and B giving rise to an emission spectrum are shown. These electron transitions cause light of wavelengths 654 nm and 488 nm to be emitted. (i) On Fig. 7.1, draw an arrow to show a third possible transition. [1] (ii) Calculate the wavelength of the emitted light for the transition in (i). wavelength = ............................................ m [3] © UCLES 2011 9702/41/O/N/11 [Turn over 16 (c) The light in a beam has a continuous spectrum of wavelengths from 400 nm to 700 nm. For The light is incident on some cool hydrogen gas, as illustrated in Fig. 7.2. Examiner’s Use incident emergent light cool hydrogen gas light Fig. 7.2 Using the values of wavelength in (b), state and explain the appearance of the spectrum of the emergent light. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [4] © UCLES 2011 9702/41/O/N/11 17 8 The isotope phosphorus-33 ( 33 33 15 P) undergoes β-decay to form sulfur-33 ( 16 S), which is For stable. Examiner’s Use The half-life of phosphorus-33 is 24.8 days. (a) (i) Define radioactive half-life. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) Show that the decay constant of phosphorus-33 is 3.23 × 10–7 s–1. [1] (b) A pure sample of phosphorus-33 has an initial activity of 3.7 × 106 Bq. Calculate (i) the initial number of phosphorus-33 nuclei in the sample, number = .................................................. [2] (ii) the number of phosphorus-33 nuclei remaining in the sample after 30 days. number = .................................................. [2] © UCLES 2011 9702/41/O/N/11 [Turn over 18 (c) After 30 days, the sample in (b) will contain phosphorus-33 and sulfur-33 nuclei. For Use your answers in (b) to calculate the ratio Examiner’s Use number of phosphorus-33 nuclei after 30 days . number of sulfur-33 nuclei after 30 days ratio = .................................................. [2] © UCLES 2011 9702/41/O/N/11 19 Section B For Examiner’s Answer all the questions in the spaces provided. Use 9 (a) State two effects of negative feedback on the gain of an amplifier incorporating an operational amplifier (op-amp). 1. ...................................................................................................................................... .......................................................................................................................................... 2. ...................................................................................................................................... .......................................................................................................................................... [2] (b) An incomplete circuit diagram of a non-inverting amplifier using an ideal op-amp is shown in Fig. 9.1. +9 V – + 12 kΩ –9 V R Fig. 9.1 (i) Complete the circuit diagram of Fig. 9.1. Label the input and the output. [2] (ii) Calculate the resistance of resistor R so that the non-inverting amplifier has a voltage gain of 15. resistance = ............................................. Ω [2] © UCLES 2011 9702/41/O/N/11 [Turn over 20 (c) On Fig. 9.2, draw a graph to show the variation with input potential VIN of the output For potential VOUT . Examiner’s You shou
Recommended
9702_w11_er

9702_w11_er

62 pages

9702_w11_qp_35

9702_w11_qp_35

12 pages

9702_w11_qp_34

9702_w11_qp_34

12 pages

9702_w11_qp_36

9702_w11_qp_36

12 pages

9702_w11_qp_43

9702_w11_qp_43

24 pages

9702_w11_qp_42

9702_w11_qp_42

24 pages

9702_w11_qp_51

9702_w11_qp_51

8 pages

9702_w11_qp_52

9702_w11_qp_52

8 pages

9702_w11_qp_11

9702_w11_qp_11

28 pages

9702_w11_qp_12

9702_w11_qp_12

24 pages

9702_w11_qp_53

9702_w11_qp_53

8 pages

9702_w11_qp_13

9702_w11_qp_13

28 pages

9702_w11_qp_21

9702_w11_qp_21

16 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks