9702_w10_qp_11

Please download to get full document.

View again

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 7 | Pages: 24

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level PHYSICS 9702/11 Paper 1 Multiple…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level PHYSICS 9702/11 Paper 1 Multiple Choice October/November 2010 1 hour Additional Materials: Multiple Choice Answer Sheet Soft clean eraser *4840008086* Soft pencil (type B or HB is recommended) READ THESE INSTRUCTIONS FIRST Write in soft pencil. Do not use staples, paper clips, highlighters, glue or correction fluid. Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you. There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D. Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet. Read the instructions on the Answer Sheet very carefully. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any working should be done in this booklet. This document consists of 24 printed pages. IB10 11_9702_11/6RP © UCLES 2010 [Turn over 2 Data speed of light in free space, c = 3.00 × 108 m s–1 permeability of free space, µ0 = 4π × 10–7 H m–1 permittivity of free space, ε0 = 8.85 × 10–12 F m–1 elementary charge, e = 1.60 × 10–19 C the Planck constant, h = 6.63 × 10–34 J s unified atomic mass constant, u = 1.66 × 10–27 kg rest mass of electron, me = 9.11 × 10–31 kg rest mass of proton, mp = 1.67 × 10–27 kg molar gas constant, R = 8.31 J K–1 mol–1 the Avogadro constant, NA = 6.02 × 1023 mol–1 the Boltzmann constant, k = 1.38 × 10–23 J K–1 gravitational constant, G = 6.67 × 10–11 N m2 kg–2 acceleration of free fall, g = 9.81 m s–2 © UCLES 2010 9702/11/O/N/10 3 Formulae 1 uniformly accelerated motion, s = ut + 2 at 2 v2 = u2 + 2as work done on/by a gas, W = p∆V gravitational potential, φ = – Gm r hydrostatic pressure, p = ρgh pressure of an ideal gas, p= 1 Nm c 2 3 V simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ±ω x 02 − x 2 electric potential, V= Q 4 πε 0r capacitors in series, 1 / C = 1 / C1 + 1 / C2 + . . . capacitors in parallel, C = C1 + C2 + . . . 1 energy of charged capacitor, W= 2 QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1 / R = 1 / R1 + 1 / R2 + . . . alternating current/voltage, x = x0 sin ωt radioactive decay, x = x0 exp(–λt) decay constant, λ = 0.693 t1 2 © UCLES 2010 9702/11/O/N/10 [Turn over 4 1 A signal has a frequency of 2.0 MHz. What is the period of the signal? A 2 µs B 5 µs C 200 ns D 500 ns 2 A metal sphere of radius r is dropped into a tank of water. As it sinks at speed v, it experiences a drag force F given by F = kr v, where k is a constant. What are the SI base units of k ? A kg m2 s–1 B kg m–2 s–2 C kg m–1 s–1 D kg m s–2 3 Which physical quantity would result from a calculation in which a potential difference is multiplied by an electric charge? A electric current B electric energy C electric field strength D electric power Space for working © UCLES 2010 9702/11/O/N/10 5 4 The angular deflection of the needle of an ammeter varies with the current passing through the ammeter as shown in the graph. angular deflection 0 0 current Which diagram could represent the appearance of the scale on this meter? A B 2 3 4 5 6 4 5 6 7 1 7 8 2 3 8 0 9 01 9 C D 3 456 7 4 5 6 1 2 8 2 3 7 8 0 9 01 9 Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 6 5 The diagram shows a cathode-ray oscilloscope (c.r.o.) being used to measure the rate of rotation of a flywheel. flywheel 10 cm M coil The flywheel has a small magnet M mounted on it. Each time the magnet passes the coil, a voltage pulse is generated, which is passed to the c.r.o. The display of the c.r.o. is 10 cm wide. The flywheel is rotating at a rate of about 3000 revolutions per minute. Which time-base setting will display clearly separate pulses on the screen? A 1 s cm–1 B 10 ms cm–1 C 100 µs cm–1 D 1 µs cm–1 Space for working © UCLES 2010 9702/11/O/N/10 7 6 A fixed quantity x0 is measured many times in an experiment that has experimental uncertainty. A graph is plotted to show the number n of times that a particular value x is obtained. Which graph could be obtained if the measurement of x0 has a large systematic error but a small random error? A B n n 0 0 x0 x x0 x C D n n 0 0 x0 x x0 x Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 8 7 A ball is thrown horizontally in still air from the top of a very tall building. The ball is affected by air resistance. What happens to the horizontal and to the vertical components of the ball’s velocity? horizontal component vertical component of velocity of velocity A decreases to zero increases at a constant rate B decreases to zero increases to a constant value C remains constant increases at a constant rate D remains constant increases to a constant value 8 The velocity-time graph below is for a stone thrown vertically up into the air. Air resistance is negligible. velocity X 0 0 t time Y The stone is thrown up at time zero. Area X represents a distance of 5 m. Area Y represents a distance of 3 m. What is the displacement of the stone from its initial position at time t ? A 2m B 3m C 5m D 8m Space for working © UCLES 2010 9702/11/O/N/10 9 9 In order that a train can stop safely, it will always pass a signal showing a yellow light before it reaches a signal showing a red light. Drivers apply the brake at the yellow light and this results in a uniform deceleration to stop exactly at the red light. The distance between the red and yellow lights is x. What must be the minimum distance between the lights if the train speed is increased by 20 %, without changing the deceleration of the trains? A 1.20 x B 1.25 x C 1.44 x D 1.56 x 10 The gravitational field strength on the surface of planet P is one tenth of that on the surface of planet Q. On the surface of P, a body has a mass of 1.0 kg and a weight of 1.0 N. What are the mass and weight of the same body on the surface of planet Q? mass on Q / kg weight on Q / N A 1.0 0.1 B 1.0 10 C 10 10 D 10 100 11 A body, initially at rest, explodes into two masses M1 and M2 that move apart with speeds v1 and v2 respectively. v What is the ratio 1 ? v2 M1 M2 M1 M2 A B C D M2 M1 M2 M1 Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 10 12 Two experiments are carried out using two trolleys of equal mass. All moving parts of the trolleys are frictionless, as is the surface that the trolleys move over. In both experiments, trolley X moves towards trolley Y, which is initially stationary. X Y After the collision in experiment 1, X is stationary and Y moves off to the right. After the collision in experiment 2, the trolleys join and move off together. What types of collision occur in these experiments? experiment 1 experiment 2 A elastic elastic B elastic inelastic C inelastic elastic D inelastic inelastic 13 A rigid L-shaped lever arm is pivoted at point P. P 5N 2m 2m 10 N 3m 1m 15 N Three forces act on the lever arm, as shown in the diagram. What is the magnitude of the resultant moment of these forces about point P? A 15 N m B 20 N m C 35 N m D 75 N m Space for working © UCLES 2010 9702/11/O/N/10 11 14 Two parallel forces, each of magnitude F, act on a body as shown. F d s F What is the magnitude of the torque on the body produced by these forces? A Fd B Fs C 2F d D 2F s 15 A street lamp is fixed to a wall by a metal rod and a cable. cable wall P metal rod lamp Which vector triangle represents the forces acting at point P? A B C D © UCLES 2010 9702/11/O/N/10 [Turn over 12 16 What is the internal energy of a system? A the amount of heat supplied to the system B the energy of the atoms of the system C the total kinetic energy of the system D the total potential energy of the system 17 A steam turbine is used to drive a generator. The input power to the turbine is PI and the output power PO. The power loss in the turbine is PL, as shown below. input power PI output power PO turbine generator power loss PL What is the efficiency of the turbine? PL PI PL PO A B C D PO PO PI PI Space for working © UCLES 2010 9702/11/O/N/10 13 18 The diagram shows a lift system in which the elevator (mass m1) is partly counterbalanced by a heavy weight (mass m2). motor v v elevator m1 m2 At what rate does the motor provide energy to the system when the elevator is rising at a steady speed v ? (g = acceleration of free fall) A 1 2 m1 v 2 B 1 2 (m1 – m2)v 2 C m1gv D (m1 – m2)gv 19 The Mariana Trench in the Pacific Ocean has a depth of about 10 km. Assuming that sea water is incompressible and has a density of about 1020 kg m–3, what would be the approximate pressure at that depth? A 105 Pa B 106 Pa C 107 Pa D 108 Pa Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 14 20 A student writes some statements about solids, liquids and gases. 1 Solids are rigid because the molecules in a solid vibrate. 2 Liquids flow because the molecules in a liquid are closer than in a gas. 3 Gases are less dense than liquids because the molecules in a gas move randomly. Which statements are correct? A 1 only B 1 and 3 only C 2 and 3 only D none of the above 21 The graph shows how force depends on extension for a certain spring. 10.0 F/N 8.0 6.0 4.0 2.0 0.0 0 10 20 30 40 50 extension / mm What is the energy stored in the spring when the extension is 30 mm? A 0.095 J B 0.19 J C 0.25 J D 0.95 J Space for working © UCLES 2010 9702/11/O/N/10 15 22 A wire consists of a 3.0 m length of metal X joined to a 1.0 m length of metal Y. The cross-sectional area of the wire is uniform. X 3.0 m Y 1.0 m load A load hung from the wire causes metal X to stretch by 1.5 mm and metal Y to stretch by 1.0 mm. The same load is then hung from a second wire of the same cross-section, consisting of 1.0 m of metal X and 3.0 m of metal Y. What is the total extension of this second wire? A 2.5 mm B 3.5 mm C 4.8 mm D 5.0 mm Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 16 23 The graph shows how the displacement of a particle in a wave varies with time. displacement / cm 2 1 0 2 4 6 time / s _1 _2 Which statement is correct? A The wave has an amplitude of 2 cm and could be either transverse or longitudinal. B The wave has an amplitude of 2 cm and must be transverse. C The wave has an amplitude of 4 cm and could be either transverse or longitudinal. D The wave has an amplitude of 4 cm and must be transverse. 24 The diagram shows a vertical cross-section through a water wave moving from left to right. At which point is the water moving upwards with maximum speed? B A C D Space for working © UCLES 2010 9702/11/O/N/10 17 25 When plane-polarised light of amplitude a is passed through a polarising filter as shown, the amplitude of the light emerging is a cosθ. amplitude = a intensity = I θ plane polarised light amplitude = a cos θ polarising filter The intensity of the initial beam is I. What is the intensity of the emerging light when θ is 60.0°? A 0.250 I B 0.500 I C 0.750 I D 0.866 I 26 A stationary wave is produced by two loudspeakers emitting sound of the same frequency. X Y speaker speaker 1 2 1.5 m When a microphone is moved between X and Y, a distance of 1.5 m, six nodes and seven antinodes are detected. What is the wavelength of the sound? A 0.50 m B 0.43 m C 0.25 m D 0.21 m Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 18 27 Which electromagnetic wave would cause the most significant diffraction effect for an atomic lattice of spacing around 10–10 m? A infra-red B microwave C ultraviolet D X-ray 28 An electron is in an electric field of strength 5 × 104 V m–1. The field is the only influence on the electron. The mass and charge of an electron are known. Which quantity can be calculated without any more information? A the force on the electron B the momentum of the electron C the kinetic energy of the electron D the speed of the electron Space for working © UCLES 2010 9702/11/O/N/10 19 29 Electrons are accelerated and then directed into the uniform electric field between two parallel plates in a vacuum. electrons What best describes the shape of the path followed by the electrons in the field? A a downwards curve along a line that is part of a circle B a downwards curve along a line that is not part of a circle C an upwards curve along a line that is part of a circle D an upwards curve along a line that is not part of a circle 30 A charged particle is in the electric field between two horizontal metal plates connected to a source of constant potential difference, as shown. There is a force F on the particle due to the electric field. charged particle The separation of the plates is doubled. What will be the new force on the particle? A F B F C F D 2F 4 2 Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 20 31 The current in the circuit shown is 4.8 A. R X Y What is the direction of flow and the rate of flow of electrons through the resistor R? direction of flow rate of flow A X to Y 3.0 × 1019 s–1 B X to Y 6.0 × 1018 s–1 C Y to X 3.0 × 1019 s–1 D Y to X 6.0 × 1018 s–1 Space for working © UCLES 2010 9702/11/O/N/10 21 32 Which component has the I-V graph shown? I 0 0 V A filament lamp B light-dependent resistor C semiconductor diode D thermistor 33 A copper wire is cylindrical and has resistance R. What will be the resistance of a copper wire of twice the length and twice the radius? A R B R C R D 2R 4 2 34 A relay is required to operate 800 m from its power supply. The power supply has negligible internal resistance. The relay requires 16.0 V and a current of 0.60 A to operate. A cable connects the relay to the power supply and two of the wires in the cable are used to supply power to the relay. The resistance of each of these wires is 0.0050 Ω per metre. What is the minimum output e.m.f. of the power supply? A 16.6 V B 18.4 V C 20.8 V D 29.3 V Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 22 35 The diagram shows part of a circuit. 40 Ω 160 Ω 120 Ω What is the total resistance of the combination of the three resistors? A 320 Ω B 240 Ω C 190 Ω D 80 Ω 36 The diagram shows an arrangement of resistors. 10 Ω X 10 Ω 10 Ω Y 10 Ω What is the total electrical resistance between X and Y? A less than 1 Ω B between 1 Ω and 10 Ω C between 10 Ω and 30 Ω D 40 Ω Space for working © UCLES 2010 9702/11/O/N/10 23 37 In the circuit below, P is a potentiometer of total resistance 10 Ω and Q is a fixed resistor of resistance 10 Ω. The battery has an e.m.f. of 4.0 V and negligible internal resistance. The voltmeter has a very high resistance. X P Y V 4.0 V Q The slider on the potentiometer is moved from X to Y and a graph of voltmeter reading V is plotted against slider position. Which graph would be obtained? A B C D V V V V 4 4 4 4 2 2 2 2 0 0 0 0 X Y X Y X Y X Y slider position slider position slider position slider position Space for working © UCLES 2010 9702/11/O/N/10 [Turn over 24 235 38 Uranium-235 may be represented by the symbol 92 U . 235 Which row shows the numbers of nucleons, protons and neutrons in a 92 U nucleus? nucleons protons neutrons A 92 235 143 B 143 92 235 C 235 92 143 D 235 143 92 25 24 39 When a magnesium nucleus 12 Mg is hit by a gamma ray, a sodium nucleus 11Na is formed and another particle is emitted. What are the nucleon number (mass number) and proton number (atomic number) of the other particle produced in this nuclear reaction? nucleon number proton number A 0 –1 B 0 1 C 1 –1 D 1 1 40 Which nuclear equation shows the beta decay of a nucleus of argon (Ar) into potassium (K)? 44 40 A 21 Ar → 19 K + 42 He 40 40 B 20 Ar → 19 K + 01e 40 40 0 C 18 Ar → 19 K + −1e D 40 19 Ar → 40 19 K + 00 γ Space for working Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2010 9702/11/O/N/10
Recommended
9702_w10_er

9702_w10_er

59 pages

9702_w10_qp_53

9702_w10_qp_53

8 pages

9702_w10_qp_43

9702_w10_qp_43

24 pages

9702_w10_qp_36

9702_w10_qp_36

12 pages

9702_w10_qp_52

9702_w10_qp_52

8 pages

9702_w10_qp_35

9702_w10_qp_35

12 pages

9702_w10_qp_42

9702_w10_qp_42

24 pages

9702_w10_qp_51

9702_w10_qp_51

8 pages

9702_w10_qp_21

9702_w10_qp_21

16 pages

9702_w10_qp_12

9702_w10_qp_12

24 pages

9702_w10_qp_41

9702_w10_qp_41

24 pages

9702_w10_qp_13

9702_w10_qp_13

24 pages

9702_w10_qp_33

9702_w10_qp_33

12 pages

9702_w10_qp_23

9702_w10_qp_23

16 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks