9702_s13_qp_43

Please download to get full document.

View again

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 8 | Pages: 24

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 3 1 4 1 6 0 9 9 5 0 * PHYSICS 9702/43 Paper 4 A2 Structured…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 3 1 4 1 6 0 9 9 5 0 * PHYSICS 9702/43 Paper 4 A2 Structured Questions May/June 2013 2 hours Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. For Examiner’s Use Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use 1 appropriate units. 2 At the end of the examination, fasten all your work securely together. 3 The number of marks is given in brackets [ ] at the end of each question or part question. 4 5 6 7 8 9 10 11 12 Total This document consists of 23 printed pages and 1 blank page. DC (NF/JG) 73265 © UCLES 2013 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 1 ( = 8.99 × 10 9 m F–1 ) 4πε0 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K –1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2013 9702/43/M/J/13 3 Formulae uniformly accelerated motion, s = ut +  at 2 v 2 = u 2 + 2as work done on/by a gas, W = pΔV Gm gravitational potential, φ =– r hydrostatic pressure, p = ρgh Nm 2 pressure of an ideal gas, p =  V c simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω √⎯(x⎯ 0⎯ 2 ⎯ –⎯ x⎯ ⎯ 2⎯ ) Q electric potential, V = 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W =  QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ω t radioactive decay, x = x0 exp(– λt ) 0.693 decay constant, λ = t  © UCLES 2013 9702/43/M/J/13 [Turn over 4 Section A For Examiner’s Answer all the questions in the spaces provided. Use 1 (a) State what is meant by a gravitational field. .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] (b) In the Solar System, the planets may be assumed to be in circular orbits about the Sun. Data for the radii of the orbits of the Earth and Jupiter about the Sun are given in Fig. 1.1. radius of orbit / km Earth 1.50 × 108 Jupiter 7.78 × 108 Fig. 1.1 (i) State Newton’s law of gravitation. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [3] (ii) Use Newton’s law to determine the ratio gravitational field strength due to the Sun at orbit of Earth . gravitational field strength due to the Sun at orbit of Jupiter ratio = ................................................. [3] © UCLES 2013 9702/43/M/J/13 5 (c) The orbital period of the Earth about the Sun is T. For Examiner’s (i) Use ideas about circular motion to show that the mass M of the Sun is given by Use 4π2R 3 M= GT 2 where R is the radius of the Earth’s orbit about the Sun and G is the gravitational constant. Explain your working. [3] (ii) The orbital period T of the Earth about the Sun is 3.16 × 107 s. The radius of the Earth’s orbit is given in Fig. 1.1. Use the expression in (i) to determine the mass of the Sun. mass = ............................................ kg [2] © UCLES 2013 9702/43/M/J/13 [Turn over 6 2 (a) State what is meant by an ideal gas. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [3] (b) Two cylinders A and B are connected by a tube of negligible volume, as shown in Fig. 2.1. cylinder A cylinder B tap T 2.5 × 103 cm3 3.4 × 105 Pa 1.6 × 103 cm3 300 K 4.9 × 105 Pa tube Fig. 2.1 Initially, tap T is closed. The cylinders contain an ideal gas at different pressures. (i) Cylinder A has a constant volume of 2.5 × 103 cm3 and contains gas at pressure 3.4 × 105 Pa and temperature 300 K. Show that cylinder A contains 0.34 mol of gas. [1] © UCLES 2013 9702/43/M/J/13 7 (ii) Cylinder B has a constant volume of 1.6 × 103 cm3 and contains 0.20 mol of gas. For When tap T is opened, the pressure of the gas in both cylinders is 3.9 × 105 Pa. Examiner’s No thermal energy enters or leaves the gas. Use Determine the final temperature of the gas. temperature = .............................................. K [2] (c) By reference to work done and change in internal energy, suggest why the temperature of the gas in cylinder A has changed. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [3] © UCLES 2013 9702/43/M/J/13 [Turn over 8 3 A ball is held between two fixed points A and B by means of two stretched springs, as shown For in Fig. 3.1. Examiner’s Use A B ball Fig. 3.1 The ball is free to oscillate along the straight line AB. The springs remain stretched and the motion of the ball is simple harmonic. The variation with time t of the displacement x of the ball from its equilibrium position is shown in Fig. 3.2. 2.0 x / cm 1.0 0 0 0.2 0.4 0.6 0.8 1.0 t /s 1.2 –1.0 –2.0 Fig. 3.2 (a) (i) Use Fig. 3.2 to determine, for the oscillations of the ball, 1. the amplitude, amplitude = ........................................... cm [1] 2. the frequency. frequency = ............................................ Hz [2] © UCLES 2013 9702/43/M/J/13 9 (ii) Show that the maximum acceleration of the ball is 5.2 m s–2. For Examiner’s Use [2] (b) Use your answers in (a) to plot, on the axes of Fig. 3.3, the variation with displacement x of the acceleration a of the ball. a / m s–2 0 0 x / 10–2 m Fig. 3.3 [2] © UCLES 2013 9702/43/M/J/13 [Turn over 10 (c) Calculate the displacement of the ball at which its kinetic energy is equal to one half of For the maximum kinetic energy. Examiner’s Use displacement = ........................................... cm [3] © UCLES 2013 9702/43/M/J/13 11 4 (a) Define electric potential at a point. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ...................................................................................................................................... [2] (b) A charged particle is accelerated from rest in a vacuum through a potential difference V. Show that the final speed v of the particle is given by the expression ⎛2Vq ⎞ v= ⎜ ⎟ ⎝ m ⎠ q where is the ratio of the charge to the mass (the specific charge) of the particle. m [2] (c) A particle with specific charge +9.58 × 107 C kg–1 is moving in a vacuum towards a fixed metal sphere, as illustrated in Fig. 4.1. metal sphere 2.5 × 105 m s–1 potential +470 V particle specific charge +9.58 × 107 C kg–1 Fig. 4.1 The initial speed of the particle is 2.5 × 105 m s–1 when it is a long distance from the sphere. The sphere is positively charged and has a potential of +470 V. Use the expression in (b) to determine whether the particle will reach the surface of the sphere. [3] © UCLES 2013 9702/43/M/J/13 [Turn over 12 5 (a) Define the tesla. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ...................................................................................................................................... [2] (b) A long solenoid has an area of cross-section of 28 cm2, as shown in Fig. 5.1. solenoid area of cross-section 28 cm2 coil C 160 turns Fig. 5.1 A coil C consisting of 160 turns of insulated wire is wound tightly around the centre of the solenoid. The magnetic flux density B at the centre of the solenoid is given by the expression B = μ0n I where I is the current in the solenoid, n is a constant equal to 1.5 × 103 m–1 and μ0 is the permeability of free space. Calculate, for a current of 3.5 A in the solenoid, (i) the magnetic flux density at the centre of the solenoid, flux density = .............................................. T [2] © UCLES 2013 9702/43/M/J/13 13 (ii) the flux linkage in the coil C. For Examiner’s Use flux linkage = ........................................... Wb [2] (c) (i) State Faraday’s law of electromagnetic induction. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) The current in the solenoid in (b) is reversed in direction in a time of 0.80 s. Calculate the average e.m.f. induced in coil C. e.m.f. = .............................................. V [2] © UCLES 2013 9702/43/M/J/13 [Turn over 14 6 A simple transformer is illustrated in Fig. 6.1. For Examiner’s Use load input resistor primary secondary coil coil laminated iron core Fig. 6.1 (a) State (i) why the iron core is laminated, .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) what is meant by an ideal transformer. .................................................................................................................................. .............................................................................................................................. [1] (b) An ideal transformer has 300 turns on the primary coil and 8100 turns on the secondary coil. The root-mean-square input voltage to the primary coil is 9.0 V. Calculate the peak voltage across the load resistor connected to the secondary coil. peak voltage = .............................................. V [2] © UCLES 2013 9702/43/M/J/13 15 7 Some data for the work function energy Φ and the threshold frequency f0 of some metal For surfaces are given in Fig. 7.1. Examiner’s Use metal Φ / 10–19 J f0 / 1014 Hz sodium 3.8 5.8 zinc 5.8 8.8 platinum 9.0 Fig. 7.1 (a) (i) State what is meant by the threshold frequency. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) Calculate the threshold frequency for platinum. threshold frequency = ............................................ Hz [2] (b) Electromagnetic radiation having a continuous spectrum of wavelengths between 300 nm and 600 nm is incident, in turn, on each of the metals listed in Fig. 7.1. Determine which metals, if any, will give rise to the emission of electrons. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] (c) When light of a particular intensity and frequency is incident on a metal surface, electrons are emitted. State and explain the effect, if any, on the rate of emission of electrons from this surface for light of the same intensity and higher frequency. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [3] © UCLES 2013 9702/43/M/J/13 [Turn over 16 8 (a) State what is meant by a nuclear fusion reaction. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ...................................................................................................................................... [2] (b) One nuclear reaction that takes place in the core of the Sun is represented by the equation 2 1 3 1H + 1H 2 He + energy. Data for the nuclei are given in Fig. 8.1. mass / u proton 11 H 1.00728 2 deuterium 1H 2.01410 helium 32 He 3.01605 Fig. 8.1 (i) Calculate the energy, in joules, released in this reaction. energy = .............................................. J [3] (ii) The temperature in the core of the Sun is approximately 1.6 × 107 K. Suggest why such a high temperature is necessary for this reaction to take place. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2013 9702/43/M/J/13 17 Section B For Examiner’s Answer all the questions in the spaces provided. Use 9 (a) Suggest electrical sensing devices, one in each case, that may be used to monitor changes in (i) light intensity, .............................................................................................................................. [1] (ii) the width of a crack in a welded joint, .............................................................................................................................. [1] (iii) the intensity of an ultrasound beam. .............................................................................................................................. [1] © UCLES 2013 9702/43/M/J/13 [Turn over 18 (b) A student designs the circuit of Fig. 9.1 to detect changes in temperature in the range For 0 °C to 100 °C. Examiner’s Use +V thermistor, resistance RT resistor, constant resistance R VOUT Fig. 9.1 The resistance of the thermistor is RT and that of the resistor is R. The student monitors the potential difference VOUT. State and explain (i) whether VOUT increases or decreases as the temperature of the thermistor increases, .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [3] (ii) whether the change in VOUT varies linearly with the change in temperature of the thermistor. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2013 9702/43/M/J/13 19 10 (a) Distinguish between sharpness and contrast in X-ray imaging. For Examiner’s sharpness: ....................................................................................................................... Use .......................................................................................................................................... contrast: ........................................................................................................................... .......................................................................................................................................... [2] (b) State two causes of loss of sharpness of an X-ray image. 1. ...................................................................................................................................... .......................................................................................................................................... 2. ...................................................................................................................................... .............................................................................................
Recommended
9702_s13_qp_41

9702_s13_qp_41

24 pages

9702_s13_er

9702_s13_er

58 pages

9702_s13_qp_52

9702_s13_qp_52

8 pages

9702_s13_qp_53

9702_s13_qp_53

8 pages

9702_s13_qp_42

9702_s13_qp_42

24 pages

9702_s13_qp_51

9702_s13_qp_51

8 pages

9702_s13_qp_35

9702_s13_qp_35

12 pages

9702_s13_qp_41

9702_s13_qp_41

24 pages

9702_s13_qp_33

9702_s13_qp_33

12 pages

9702_s13_qp_22

9702_s13_qp_22

16 pages

9702_s13_qp_34

9702_s13_qp_34

12 pages

9702_s13_qp_32

9702_s13_qp_32

12 pages

9702_s13_qp_23

9702_s13_qp_23

16 pages

9702_s13_ms_53

9702_s13_ms_53

4 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks