9702_s13_qp_23

Please download to get full document.

View again

of 16
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 34 | Pages: 16

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 4 2 5 4 4 3 1 8 1 3 * PHYSICS…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 4 2 5 4 4 3 1 8 1 3 * PHYSICS 9702/23 Paper 2 AS Structured Questions May/June 2013 1 hour Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. For Examiner’s Use At the end of the examination, fasten all your work securely together. 1 The number of marks is given in brackets [ ] at the end of each question or part question. 2 3 4 5 6 7 Total This document consists of 14 printed pages and 2 blank pages. DC (SJF/CGW) 57980/4 © UCLES 2013 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 1 ( = 8.99 × 10 9 m F–1 ) 4πε0 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K–1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2013 9702/23/M/J/13 3 Formulae uniformly accelerated motion, s = ut + 12 at 2 v 2 = u 2 + 2as work done on/by a gas, W = pV gravitational potential, φ = – Gm r hydrostatic pressure, p = ρgh 1 Nm 2 pressure of an ideal gas, p= 3 c V simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω (x02 – x 2) Q electric potential, V= 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W = 12 QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ωt radioactive decay, x = x0 exp(–λt) decay constant, λ = 0.693 t 1 2 © UCLES 2013 9702/23/M/J/13 [Turn over 4 Answer all the questions in the spaces provided. For Examiner’s 1 (a) State the SI base units of force. Use ...................................................................................................................................... [1] (b) Two wires each of length l are placed parallel to each other a distance x apart, as shown in Fig. 1.1. l I x I Fig. 1.1 Each wire carries a current I. The currents give rise to a force F on each wire given by K I 2l F= x where K is a constant. (i) Determine the SI base units of K. units of K ................................................. [2] (ii) On Fig. 1.2, sketch the variation with x of F. The quantities I and l remain constant. F 0 0 x Fig. 1.2 [2] © UCLES 2013 9702/23/M/J/13 5 (iii) The current I in both of the wires is varied. For Examiner’s On Fig. 1.3, sketch the variation with I of F. The quantities x and l remain constant. Use F 0 0 I Fig. 1.3 [1] © UCLES 2013 9702/23/M/J/13 [Turn over 6 BLANK PAGE © UCLES 2013 9702/23/M/J/13 7 2 (a) A student walks from A to B along the path shown in Fig. 2.1. For Examiner’s Use A B Fig. 2.1 The student takes time t to walk from A to B. (i) State the quantity, apart from t, that must be measured in order to determine the average value of 1. speed, .................................................................................................................................. .............................................................................................................................. [1] 2. velocity. .................................................................................................................................. .............................................................................................................................. [1] (ii) Define acceleration. .............................................................................................................................. [1] © UCLES 2013 9702/23/M/J/13 [Turn over 8 (b) A girl falls vertically onto a trampoline, as shown in Fig. 2.2. For Examiner’s Use springy material Fig. 2.2 The trampoline consists of a central section supported by springy material. At time t = 0 the girl starts to fall. The girl hits the trampoline and rebounds vertically. The variation with time t of velocity v of the girl is illustrated in Fig. 2.3. 10.0 8.0 6.0 v / m s–1 4.0 2.0 0 0 0.5 1.0 1.5 2.0 t /s – 2.0 – 4.0 – 6.0 rebound time – 8.0 Fig. 2.3 For the motion of the girl, calculate (i) the distance fallen between time t = 0 and when she hits the trampoline, distance = ............................................. m [2] © UCLES 2013 9702/23/M/J/13 9 (ii) the average acceleration during the rebound. For Examiner’s Use acceleration = ........................................ m s–2 [2] (c) (i) Use Fig. 2.3 to compare, without calculation, the accelerations of the girl before and after the rebound. Explain your answer. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) Use Fig. 2.3 to compare, without calculation, the potential energy of the girl at t = 0 and t = 1.85 s. Explain your answer. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2013 9702/23/M/J/13 [Turn over 10 3 (a) (i) State the principle of conservation of momentum. For Examiner’s .................................................................................................................................. Use .................................................................................................................................. .............................................................................................................................. [2] (ii) State the difference between an elastic and an inelastic collision. .............................................................................................................................. [1] (b) An object A of mass 4.2 kg and horizontal velocity 3.6 m s–1 moves towards object B as shown in Fig. 3.1. A B 3.6 m s–1 1.2 m s–1 4.2 kg 1.5 kg before collision Fig. 3.1 Object B of mass 1.5 kg is moving with a horizontal velocity of 1.2 m s–1 towards object A. The objects collide and then both move to the right, as shown in Fig. 3.2. A B v 3.0 m s–1 4.2 kg 1.5 kg after collision Fig. 3.2 Object A has velocity v and object B has velocity 3.0 m s–1. (i) Calculate the velocity v of object A after the collision. velocity = ........................................ m s–1 [3] (ii) Determine whether the collision is elastic or inelastic. [3] © UCLES 2013 9702/23/M/J/13 11 4 (a) Define For Examiner’s (i) stress, Use .............................................................................................................................. [1] (ii) strain. .............................................................................................................................. [1] (b) The Young modulus of the metal of a wire is 0.17 TPa. The cross-sectional area of the wire is 0.18 mm2. The wire is extended by a force F. This causes the length of the wire to be increased by 0.095 %. Calculate (i) the stress, stress = ............................................ Pa [4] (ii) the force F. F = ............................................. N [2] © UCLES 2013 9702/23/M/J/13 [Turn over 12 BLANK PAGE © UCLES 2013 9702/23/M/J/13 13 5 (a) Explain the principle of superposition. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ...................................................................................................................................... [2] (b) Sound waves travel from a source S to a point X along two paths SX and SPX, as shown in Fig. 5.1. P reflecting surface 0m 4. 3. 0m S X Fig. 5.1 (i) State the phase difference between these waves at X for this to be the position of 1. a minimum, phase difference = .................................................. unit .............................. [1] 2. a maximum. phase difference = .................................................. unit .............................. [1] (ii) The frequency of the sound from S is 400 Hz and the speed of sound is 320 m s–1. Calculate the wavelength of the sound waves. wavelength = ............................................. m [2] (iii) The distance SP is 3.0 m and the distance PX is 4.0 m. The angle SPX is 90°. Suggest whether a maximum or a minimum is detected at point X. Explain your answer. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2013 9702/23/M/J/13 [Turn over 14 6 (a) Define potential difference (p.d.). For Examiner’s ...................................................................................................................................... [1] Use (b) A battery of electromotive force 20 V and zero internal resistance is connected in series with two resistors R1 and R2, as shown in Fig. 6.1. 20 9 R1 R2 0 – 400 1 600 1 Fig. 6.1 The resistance of R2 is 600 Ω. The resistance of R1 is varied from 0 to 400 Ω. Calculate (i) the maximum p.d. across R2, maximum p.d. = .............................................. V [1] (ii) the minimum p.d. across R2. minimum p.d. = .............................................. V [2] © UCLES 2013 9702/23/M/J/13 15 (c) A light-dependent resistor (LDR) is connected in parallel with R2, as shown in Fig. 6.2. For Examiner’s Use 20 9 R1 R2 LDR R2 0 – 400 1 600 1 Fig. 6.2 When the light intensity is varied, the resistance of the LDR changes from 5.0 kΩ to 1.2 kΩ. (i) For the maximum light intensity, calculate the total resistance of R2 and the LDR. total resistance = ............................................. Ω [2] (ii) The resistance of R1 is varied from 0 to 400 Ω in the circuits of Fig. 6.1 and Fig. 6.2. State and explain the difference, if any, between the minimum p.d. across R2 in each circuit. Numerical values are not required. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] Please turn over for Question 7. © UCLES 2013 9702/23/M/J/13 [Turn over 16 7 (a) Two isotopes of uranium are uranium-235 ( 235 238 92U) and uranium-238 ( 92U). For Examiner’s Use (i) Describe in detail an atom of uranium-235. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [4] (ii) With reference to the two forms of uranium, explain the term isotopes. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (b) When a uranium-235 nucleus absorbs a neutron, the following reaction may occur: 235 Wn 148 Z 92 U + X 57 La + YQ + 3W Xn (i) Determine the values of Y and Z. Y = ............................ Z = ............................ [2] (ii) Explain why the sum of the masses of the uranium nucleus and of the neutron does not equal the total mass of the products of the reaction. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2013 9702/23/M/J/13
Recommended
9702_s13_qp_41

9702_s13_qp_41

24 pages

9702_s13_er

9702_s13_er

58 pages

9702_s13_qp_52

9702_s13_qp_52

8 pages

9702_s13_qp_53

9702_s13_qp_53

8 pages

9702_s13_qp_43

9702_s13_qp_43

24 pages

9702_s13_qp_42

9702_s13_qp_42

24 pages

9702_s13_qp_51

9702_s13_qp_51

8 pages

9702_s13_qp_35

9702_s13_qp_35

12 pages

9702_s13_qp_41

9702_s13_qp_41

24 pages

9702_s13_qp_33

9702_s13_qp_33

12 pages

9702_s13_qp_22

9702_s13_qp_22

16 pages

9702_s13_qp_34

9702_s13_qp_34

12 pages

9702_s13_qp_32

9702_s13_qp_32

12 pages

9702_s13_ms_53

9702_s13_ms_53

4 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks