9702_s12_qp_43

Please download to get full document.

View again

of 24
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 12 | Pages: 24

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 8 0 5 5 0 0 9 3 3 4 * PHYSICS 9702/43 Paper 4 A2 Structured…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level * 8 0 5 5 0 0 9 3 3 4 * PHYSICS 9702/43 Paper 4 A2 Structured Questions May/June 2012 2 hours Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. For Examiner’s Use Answer all questions. You may lose marks if you do not show your working or if you do not use 1 appropriate units. 2 At the end of the examination, fasten all your work securely together. 3 The number of marks is given in brackets [ ] at the end of each question or part question. 4 5 6 7 8 9 10 11 12 13 Total This document consists of 23 printed pages and 1 blank page. DC (KN/CGW) 56773 © UCLES 2012 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K –1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2012 9702/43/M/J/12 3 Formulae uniformly accelerated motion, s = ut +  at 2 v 2 = u 2 + 2as work done on/by a gas, W = pΔV Gm gravitational potential, φ =– r hydrostatic pressure, p = ρgh Nm 2 pressure of an ideal gas, p =  V c simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω √⎯(x⎯ 0⎯ 2 ⎯ –⎯ x⎯ ⎯ 2⎯ ) Q electric potential, V = 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W =  QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ω t radioactive decay, x = x0 exp(– λt ) 0.693 decay constant, λ = t  © UCLES 2012 9702/43/M/J/12 [Turn over 4 Section A For Examiner’s Answer all the questions in the spaces provided. Use 1 (a) Define gravitational potential at a point. .......................................................................................................................................... ..................................................................................................................................... [1] (b) The gravitational potential φ at distance r from point mass M is given by the expression GM φ = – r where G is the gravitational constant. Explain the significance of the negative sign in this expression. .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [2] (c) A spherical planet may be assumed to be an isolated point mass with its mass concentrated at its centre. A small mass m is moving near to, and normal to, the surface of the planet. The mass moves away from the planet through a short distance h. State and explain why the change in gravitational potential energy ΔEP of the mass is given by the expression ΔEP = mgh where g is the acceleration of free fall. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [4] © UCLES 2012 9702/43/M/J/12 5 (d) The planet in (c) has mass M and diameter 6.8 × 103 km. The product GM for this planet For is 4.3 × 1013 N m2 kg–1. Examiner’s Use A rock, initially at rest a long distance from the planet, accelerates towards the planet. Assuming that the planet has negligible atmosphere, calculate the speed of the rock as it hits the surface of the planet. speed = ....................................... m s–1 [3] © UCLES 2012 9702/43/M/J/12 [Turn over 6 2 (a) The kinetic theory of gases is based on some simplifying assumptions. For The molecules of the gas are assumed to behave as hard elastic identical spheres. Examiner’s State the assumption about ideal gas molecules based on Use (i) the nature of their movement, .................................................................................................................................. ............................................................................................................................. [1] (ii) their volume. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2012 9702/43/M/J/12 7 (b) A cube of volume V contains N molecules of an ideal gas. Each molecule has a For component cX of velocity normal to one side S of the cube, as shown in Fig. 2.1. Examiner’s Use side S cx Fig. 2.1 The pressure p of the gas due to the component cX of velocity is given by the expression pV = NmcX2 where m is the mass of a molecule. Explain how the expression leads to the relation pV = 13 Nm c 2 where c 2 is the mean square speed of the molecules. [3] (c) The molecules of an ideal gas have a root-mean-square (r.m.s.) speed of 520 m s–1 at a temperature of 27 °C. Calculate the r.m.s. speed of the molecules at a temperature of 100 °C. r.m.s. speed = ....................................... m s–1 [3] © UCLES 2012 9702/43/M/J/12 [Turn over 8 3 (a) Define specific latent heat. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... ..................................................................................................................................... [2] (b) The heater in an electric kettle has a power of 2.40 kW. When the water in the kettle is boiling at a steady rate, the mass of water evaporated in 2.0 minutes is 106 g. The specific latent heat of vaporisation of water is 2260 J g–1. Calculate the rate of loss of thermal energy to the surroundings of the kettle during the boiling process. rate of loss = ............................................ W [3] © UCLES 2012 9702/43/M/J/12 9 4 A small metal ball is suspended from a fixed point by means of a string, as shown in Fig. 4.1. For Examiner’s Use string ball x Fig. 4.1 The ball is pulled a small distance to one side and then released. The variation with time t of the horizontal displacement x of the ball is shown in Fig. 4.2. 6 x / cm 4 2 0 0 0.2 0.4 0.6 0.8 t /s 1.0 –2 –4 –6 Fig. 4.2 The motion of the ball is simple harmonic. (a) Use data from Fig. 4.2 to determine the horizontal acceleration of the ball for a displacement x of 2.0 cm. acceleration = ....................................... m s–2 [3] © UCLES 2012 9702/43/M/J/12 [Turn over 10 (b) The maximum kinetic energy of the ball is EK. For On the axes of Fig. 4.3, sketch a graph to show the variation with time t of the kinetic Examiner’s energy of the ball for the first 1.0 s of its motion. Use kinetic energy EK 0 0 0.2 0.4 0.6 0.8 t /s 1.0 Fig. 4.3 [3] © UCLES 2012 9702/43/M/J/12 11 5 (a) Define electric field strength. For Examiner’s .......................................................................................................................................... Use ..................................................................................................................................... [1] (b) An isolated metal sphere is to be used to store charge at high potential. The charge stored may be assumed to be a point charge at the centre of the sphere. The sphere has a radius of 25 cm. Electrical breakdown (a spark) occurs in the air surrounding the sphere when the electric field strength at the surface of the sphere exceeds 1.8 × 104 V cm–1. (i) Show that the maximum charge that can be stored on the sphere is 12.5 μC. [2] (ii) Calculate the potential of the sphere for this maximum charge. potential = ............................................. V [2] © UCLES 2012 9702/43/M/J/12 [Turn over 12 6 A sinusoidal alternating voltage supply is connected to a bridge rectifier consisting of four For ideal diodes. The output of the rectifier is connected to a resistor R and a capacitor C as Examiner’s shown in Fig. 6.1. Use C R Fig. 6.1 The function of C is to provide some smoothing to the potential difference across R. The variation with time t of the potential difference V across the resistor R is shown in Fig. 6.2. 6 V/V 4 2 0 0 10 20 30 40 50 60 t / ms Fig. 6.2 (a) Use Fig. 6.2 to determine, for the alternating supply, (i) the peak voltage, peak voltage = ............................................. V [1] (ii) the root-mean-square (r.m.s.) voltage, r.m.s. voltage = ............................................. V [1] © UCLES 2012 9702/43/M/J/12 13 (iii) the frequency. Show your working. For Examiner’s Use frequency = ........................................... Hz [2] (b) The capacitor C has capacitance 5.0 μF. For a single discharge of the capacitor through the resistor R, use Fig. 6.2 to (i) determine the change in potential difference, change = ............................................. V [1] (ii) determine the change in charge on each plate of the capacitor, change = ............................................ C [2] (iii) show that the average current in the resistor is 1.1 × 10–3 A. [2] © UCLES 2012 9702/43/M/J/12 [Turn over 14 (c) Use Fig. 6.2 and the value of the current given in (b)(iii) to estimate the resistance of For resistor R. Examiner’s Use resistance = ............................................. Ω [2] © UCLES 2012 9702/43/M/J/12 15 7 Two long straight parallel copper wires A and B are clamped vertically. The wires pass For through holes in a horizontal sheet of card PQRS, as shown in Fig. 7.1. Examiner’s Use wire A wire B S R P Q Fig. 7.1 (a) There is a current in wire A in the direction shown on Fig. 7.1. On Fig. 7.1, draw four field lines in the plane PQRS to represent the magnetic field due to the current in wire A. [3] (b) A direct current is now passed through wire B in the same direction as that in wire A. The current in wire B is larger than the current in wire A. (i) On Fig. 7.1, draw an arrow in the plane PQRS to show the direction of the force on wire B due to the magnetic field produced by the current in wire A. [1] (ii) Wire A also experiences a force. State and explain which wire, if any, will experience the larger force. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (c) The direct currents in wires A and B are now replaced by sinusoidal alternating currents of equal peak values. The currents are in phase. Describe the variation, if any, of the force experienced by wire B. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [3] © UCLES 2012 9702/43/M/J/12 [Turn over 16 8 (a) Explain what is meant by a photon. For Examiner’s .......................................................................................................................................... Use .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [3] (b) An emission spectrum is seen as a series of differently coloured lines on a black background. Suggest how this observation provides evidence for discrete electron energy levels in atoms. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ..................................................................................................................................... [2] © UCLES 2012 9702/43/M/J/12 17 9 (a) (i) State what is meant by the decay constant of a radioactive isotope. For Examiner’s .................................................................................................................................. Use .................................................................................................................................. ............................................................................................................................. [2] (ii) Show that the decay constant λ and the half-life t  of an isotope are related by the expression λt  = 0.693. [3] (b) In order to determine the half-life of a sample of a radioactive isotope, a student measures the count rate near to the sample, as illustrated in Fig. 9.1. to counter detector shielding sample of radioactive material Fig. 9.1 © UCLES 2012 9702/43/M/J/12 [Turn over 18 Initially, the measured count rate is 538 per minute. After a time of 8.0 hours, the For measured count rate is 228 per minute. Examiner’s Use Use these data to estimate the half-life of the isotope. half-life = ...................................... hours [3] (c) The accepted value of the half-life of the isotope in (b) is 5.8 hours. The difference between this value for the half-life and that calculated in (b) cannot be explained by reference to faulty equipment. Suggest two possible reasons for this difference. 1. ...................................................................................................................................... .......................................................................................................................................... 2. ...................................................................................................................................... .......................................................................................................................................... [2] © UCLES 2012 9702/43/M/J/12 19 Section B For Examiner’s Answer all the questions in the spaces provided. Use 10 A student designs an electronic sensor that is to be used to switch on a lamp when the light intensity is low. Part of the circuit is shown in Fig. 10.1. +5 V +5 V X – + –5 V 240 V sensing device processing unit output device Fig. 10.1 (a) State the name of the component labelled X on Fig. 10.1. ..................................................................................................................................... [1] (b) On Fig. 10.1, draw the symbols for (i) two resistors to complete the circuit for the sensing device, [2] (ii) a relay to complete the circuit for the processing unit. [2] (c) (i) State the purpose of the relay. .................................................................................................................................. ............................................................................................................................. [1] (ii) Suggest why the diode is connected to the output of the operational amplifier (op-amp) in the direction shown. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] © UCLES 2012 9702/43/M/J/12 [Turn over 20 11 High-speed electrons are incident on a metal target. The spectrum of the emitted X-ray For radiation is shown in Fig. 11.1. Examiner’s Use intensity 0 wavelength Fig. 11.1 (a) Explain why (i) there is a continuous distribution of wavelengths, .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) there is a sharp cut-off at short wavelength. .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (b) State (i) what is meant by the hardness of an X-ray beam, .................................................................................................................................. .................................................................................................................................. ............................................................................................................................. [2] (ii) how hardness is controlled. .................................................................................................................................. .....................................................................................................................
Recommended
9702_s12_qp_52

9702_s12_qp_52

8 pages

9702_s12_qp_53

9702_s12_qp_53

8 pages

9702_s12_er

9702_s12_er

59 pages

9702_s12_qp_35

9702_s12_qp_35

12 pages

9702_s12_qp_41

9702_s12_qp_41

24 pages

9702_s12_qp_42

9702_s12_qp_42

24 pages

9702_s12_qp_34

9702_s12_qp_34

12 pages

9702_s12_qp_21

9702_s12_qp_21

16 pages

9702_s12_qp_51

9702_s12_qp_51

8 pages

9702_s12_qp_22

9702_s12_qp_22

16 pages

9702_s12_qp_13

9702_s12_qp_13

24 pages

9702_s12_qp_33

9702_s12_qp_33

12 pages

9702_s12_qp_23

9702_s12_qp_23

16 pages

9702_s12_qp_32

9702_s12_qp_32

12 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks