9702_s12_qp_34

Please download to get full document.

View again

of 12
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 10 | Pages: 12

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 8 2 0 0 1 0 9 3 3 5 * PHYSICS…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 8 2 0 0 1 0 9 3 3 5 * PHYSICS 9702/34 Paper 3 Advanced Practical Skills 2 May/June 2012 2 hours Candidates answer on the Question Paper. Additional Materials: As listed in the Confidential Instructions. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer both questions. You will be allowed to work with the apparatus for a maximum of one hour for each question. You are expected to record all your observations as soon as these observations are made, and to plan the presentation of the records so that it is not necessary to make a fair copy of them. You may lose marks if you do not show your working or if you do not use appropriate units. Additional answer paper and graph paper should be submitted only if it becomes necessary to do so. You are reminded of the need for good English and clear presentation in your answers. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or part question. For Examiner’s Use 1 2 Total This document consists of 9 printed pages and 3 blank pages. DC (CW/SW) 49108/3 © UCLES 2012 [Turn over 2 BLANK PAGE © UCLES 2012 9702/34/M/J/12 3 You may not need to use all of the materials provided. For Examiner’s Use 1 In this experiment, you will investigate the change in current in a circuit as its resistance is changed. (a) (i) Assemble the circuit of Fig. 1.1. 3 V d.c. supply X Y A crocodile clip component holder Fig. 1.1 (ii) Close the switch. (iii) Record the ammeter reading I0. I0 = ................................................. [1] (iv) Open the switch. (b) (i) Select one of the resistors labelled with a numerical value and connect it between the crocodile clips on the component holder. Record the resistance R of your selected resistor. R = ................................................ kΩ (ii) Close the switch and record the ammeter reading I. Open the switch. I = ................................................. [1] © UCLES 2012 9702/34/M/J/12 [Turn over 4 (c) Repeat (b) using different labelled resistors until you have six sets of values of R and I. For 1 Examiner’s Include values of in your table. Use R [10] 1 (d) (i) Plot a graph of I on the y-axis against on the x-axis. [3] R (ii) Draw the straight line of best fit. [1] (iii) Determine the gradient and y-intercept of this line. gradient = ....................................................... y-intercept = ...................................................... [2] © UCLES 2012 9702/34/M/J/12 5 For Examiner’s Use © UCLES 2012 9702/34/M/J/12 [Turn over 6 (e) The quantities I and R are related by the equation For Examiner’s a a I= + Use R b where a and b are constants. Using your answers from (d)(iii), determine the values of a and b. Give appropriate units. a = ...................................................... b = ...................................................... [2] © UCLES 2012 9702/34/M/J/12 7 You may not need to use all of the materials provided. For Examiner’s Use 2 In this experiment, you will investigate how the amount of energy needed to bend a copper wire depends on its diameter. (a) You are provided with a pendulum which can be used to hit and bend a wire specimen. Attach the wooden pointer to the pendulum using Blu-Tack. Align the pointer with the 90° position on the protractor when the pendulum is hanging freely, as shown in Fig. 2.1. Check that the pendulum swings freely. 80 90 100 11 70 01 60 20 13 50 0 14 40 0 15 30 01 0 60 17 10 2 0 180 0 wooden pointer Blu-Tack protractor pendulum Fig. 2.1 (b) You are provided with copper wire specimens of two different diameters. Using the micrometer, measure and record the diameter d of one of the thicker wires. d = ................................................. [2] (c) Estimate the percentage uncertainty in your value of d. percentage uncertainty = ................................................. [1] © UCLES 2012 9702/34/M/J/12 [Turn over 8 (d) (i) Fit the wire fully into the hole in the wooden block. The wire should project about For 2 cm above the surface of the block. Examiner’s Use (ii) Position the wooden block so that the wire just touches the edge of the pendulum, as shown in Fig. 2.2. pendulum wire base of wooden stand block Fig. 2.2 (iii) Lift the pendulum so that the pointer is aligned with the 0° position on the protractor. (iv) While holding the block in position, release the pendulum and record the maximum angle θ reached by the pointer after the pendulum has bent the wire. θ = ................................................. [2] (v) The energy used to bend the wire is proportional to the value of sin (180°– θ). Calculate this value, giving your answer to an appropriate number of significant figures. sin (180°– θ) = ................................................. [2] © UCLES 2012 9702/34/M/J/12 9 (e) Repeat (b) and (d) using the thinner wire specimens. For Examiner’s Use d = ...................................................... θ = ...................................................... sin (180°– θ) = ...................................................... [3] (f) It is suggested that the relationship between θ and d is sin (180°– θ) = kd 2 where k is a constant. (i) Using your data, calculate two values of k. first value of k = ...................................................... second value of k = ...................................................... [1] © UCLES 2012 9702/34/M/J/12 [Turn over 10 (ii) Explain whether your results support the suggested relationship. For Examiner’s Use .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [1] (g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment. 1. ............................................................................................................................... .................................................................................................................................. 2. ............................................................................................................................... .................................................................................................................................. 3. ............................................................................................................................... .................................................................................................................................. 4. ............................................................................................................................... .................................................................................................................................. [4] (ii) Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures. 1. ............................................................................................................................... .................................................................................................................................. 2. ............................................................................................................................... .................................................................................................................................. 3. ............................................................................................................................... .................................................................................................................................. 4. ............................................................................................................................... .................................................................................................................................. [4] © UCLES 2012 9702/34/M/J/12 11 BLANK PAGE © UCLES 2012 9702/34/M/J/12 12 BLANK PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2012 9702/34/M/J/12
Recommended
9702_s12_qp_52

9702_s12_qp_52

8 pages

9702_s12_qp_53

9702_s12_qp_53

8 pages

9702_s12_er

9702_s12_er

59 pages

9702_s12_qp_35

9702_s12_qp_35

12 pages

9702_s12_qp_43

9702_s12_qp_43

24 pages

9702_s12_qp_41

9702_s12_qp_41

24 pages

9702_s12_qp_42

9702_s12_qp_42

24 pages

9702_s12_qp_21

9702_s12_qp_21

16 pages

9702_s12_qp_51

9702_s12_qp_51

8 pages

9702_s12_qp_22

9702_s12_qp_22

16 pages

9702_s12_qp_13

9702_s12_qp_13

24 pages

9702_s12_qp_33

9702_s12_qp_33

12 pages

9702_s12_qp_23

9702_s12_qp_23

16 pages

9702_s12_qp_32

9702_s12_qp_32

12 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks