9702_s12_qp_23

Please download to get full document.

View again

of 16
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 10 | Pages: 16

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 9 3 0 3 0 4 9 9 8 8 * PHYSICS…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level * 9 3 0 3 0 4 9 9 8 8 * PHYSICS 9702/23 Paper 2 AS Structured Questions May/June 2012 1 hour Candidates answer on the Question Paper. No Additional Materials are required. READ THESE INSTRUCTIONS FIRST Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [ ] at the end of each question or For Examiner’s Use part question. 1 2 3 4 5 6 7 Total This document consists of 14 printed pages and 2 blank pages. DC (SJF/SW) 42070/3 © UCLES 2012 [Turn over 2 Data speed of light in free space, c = 3.00 × 10 8 m s –1 permeability of free space, μ0 = 4π × 10 –7 H m–1 permittivity of free space, ε0 = 8.85 × 10 –12 F m–1 1 ( = 8.99 × 10 9 m F–1 ) 4πε0 elementary charge, e = 1.60 × 10 –19 C the Planck constant, h = 6.63 × 10 –34 J s unified atomic mass constant, u = 1.66 × 10 –27 kg rest mass of electron, me = 9.11 × 10 –31 kg rest mass of proton, mp = 1.67 × 10 –27 kg molar gas constant, R = 8.31 J K –1 mol –1 the Avogadro constant, NA = 6.02 × 10 23 mol –1 the Boltzmann constant, k = 1.38 × 10 –23 J K–1 gravitational constant, G = 6.67 × 10 –11 N m 2 kg –2 acceleration of free fall, g = 9.81 m s –2 © UCLES 2012 9702/23/M/J/12 3 Formulae uniformly accelerated motion, s = ut + 12 at 2 v 2 = u 2 + 2as work done on/by a gas, W = pV gravitational potential, φ = – Gm r hydrostatic pressure, p = ρgh 1 Nm 2 pressure of an ideal gas, p= 3 c V simple harmonic motion, a = – ω 2x velocity of particle in s.h.m., v = v0 cos ωt v = ± ω (x02 – x 2) Q electric potential, V= 4πε0r capacitors in series, 1/C = 1/C1 + 1/C2 + . . . capacitors in parallel, C = C1 + C2 + . . . energy of charged capacitor, W = 12 QV resistors in series, R = R1 + R2 + . . . resistors in parallel, 1/R = 1/R1 + 1/R2 + . . . alternating current/voltage, x = x0 sin ωt radioactive decay, x = x0 exp(–λt) decay constant, λ = 0.693 t 1 2 © UCLES 2012 9702/23/M/J/12 [Turn over 4 Answer all the questions in the spaces provided. For Examiner’s 1 (a) Explain the differences between the quantities distance and displacement. Use .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] (b) State Newton’s first law. .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [1] (c) Two tugs pull a tanker at constant velocity in the direction XY, as represented in Fig. 1.1. tug 1 T1 X 25.0° tanker Y 15.0° T2 tug 2 Fig. 1.1 Tug 1 pulls the tanker with a force T1 at 25.0° to XY. Tug 2 pulls the tanker with a force of T2 at 15.0° to XY. The resultant force R due to the two tugs is 25.0 × 103 N in the direction XY. (i) By reference to the forces acting on the tanker, explain how the tanker may be described as being in equilibrium. .................................................................................................................................. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] © UCLES 2012 9702/23/M/J/12 5 (ii) 1. Complete Fig. 1.2 to draw a vector triangle for the forces R, T1 and T2. [2] For Examiner’s Use R 25.0 × 103 N Fig. 1.2 2. Use your vector triangle in Fig. 1.2 to determine the magnitude of T1 and of T2. T1 = ................................................... N T2 = .................................................. N [2] © UCLES 2012 9702/23/M/J/12 [Turn over 6 2 A motor drags a log of mass 452 kg up a slope by means of a cable, as shown in Fig. 2.1. For Examiner’s Use m 10.0 motor start and finish cable P position of log 14.0° S Fig. 2.1 The slope is inclined at 14.0° to the horizontal. (a) Show that the component of the weight of the log acting down the slope is 1070 N. [1] (b) The log starts from rest. A constant frictional force of 525 N acts on the log. The log accelerates up the slope at 0.130 m s–2. (i) Calculate the tension in the cable. tension = ............................................. N [3] © UCLES 2012 9702/23/M/J/12 7 (ii) The log is initially at rest at point S. It is pulled through a distance of 10.0 m to For point P. Examiner’s Use Calculate, for the log, 1. the time taken to move from S to P, time = .............................................. s [2] 2. the magnitude of the velocity at P. velocity = ........................................ m s–1 [1] (c) The cable breaks when the log reaches point P. On Fig. 2.2, sketch the variation with time t of the velocity v of the log. The graph should show v from the start at S until the log returns to S. [4] v 0 0 t Fig. 2.2 © UCLES 2012 9702/23/M/J/12 [Turn over 8 BLANK PAGE © UCLES 2012 9702/23/M/J/12 9 3 (a) Show that the pressure P due to a liquid of density ρ is proportional to the depth h below For the surface of the liquid. Examiner’s Use [4] (b) The pressure of the air at the top of a mountain is less than that at the foot of the mountain. Explain why the difference in air pressure is not proportional to the difference in height as suggested by the relationship in (a). .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] © UCLES 2012 9702/23/M/J/12 [Turn over 10 4 (a) Define electric field strength. For Examiner’s .......................................................................................................................................... Use ...................................................................................................................................... [1] (b) A uniform electric field is produced by applying a potential difference of 1200 V across two parallel metal plates in a vacuum, as shown in Fig. 4.1. 1200 V 14 mm metal plates P Fig. 4.1 The separation of the plates is 14 mm. A particle P with charge 3.2 × 10–19 C and mass 6.6 × 10–27 kg starts from rest at the lower plate and is moved vertically to the top plate by the electric field. Calculate (i) the electric field strength between the plates, electric field strength = ....................................... V m–1 [2] (ii) the work done on P by the electric field, work done = .............................................. J [2] (iii) the gain in gravitational potential energy of P, gain in potential energy = .............................................. J [2] © UCLES 2012 9702/23/M/J/12 11 (iv) the gain in kinetic energy of P, For Examiner’s Use gain in kinetic energy = .............................................. J [1] (v) the speed of P when it reaches the top plate. speed = ........................................ m s–1 [2] © UCLES 2012 9702/23/M/J/12 [Turn over 12 5 (a) (i) State Kirchhoff’s first law. For Examiner’s .................................................................................................................................. Use .............................................................................................................................. [1] (ii) Kirchhoff’s first law is linked to the conservation of a certain quantity. State this quantity. .............................................................................................................................. [1] (b) A variable resistor of resistance R is used to control the current in a circuit, as shown in Fig. 5.1. 20 V + 0.50 Ω – G R 12 V 0.10 Ω Fig. 5.1 The generator G has e.m.f. 20 V and internal resistance 0.50 Ω. The battery has e.m.f. 12 V and internal resistance 0.10 Ω. The current in the circuit is 2.0 A. (i) Apply Kirchhoff’s second law to the circuit to determine the resistance R. R = ............................................. Ω [2] (ii) Calculate the total power generated by G. power = ............................................. W [2] © UCLES 2012 9702/23/M/J/12 13 (iii) Calculate the power loss in the total resistance of the circuit. For Examiner’s Use power = ............................................. W [2] (iv) The circuit is used to supply energy to the battery from the generator. Determine the efficiency of the circuit. efficiency = ................................................. [2] © UCLES 2012 9702/23/M/J/12 [Turn over 14 6 (a) Monochromatic light is diffracted by a diffraction grating. By reference to this, explain For what is meant by Examiner’s Use (i) diffraction, .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [2] (ii) coherence, .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [1] (iii) superposition. .................................................................................................................................. .................................................................................................................................. .............................................................................................................................. [1] (b) A parallel beam of red light of wavelength 630 nm is incident normally on a diffraction grating of 450 lines per millimetre. Calculate the number of diffraction orders produced. number of orders = ................................................. [3] (c) The red light in (b) is replaced with blue light. State and explain the effect on the diffraction pattern. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [3] © UCLES 2012 9702/23/M/J/12 15 7 A radioactive source emits α-radiation and γ-radiation. For Examiner’s Explain how it may be shown that the source does not emit β-radiation using Use (a) the absorption properties of the radiation, .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] (b) the effects of a magnetic field on the radiation. .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... .......................................................................................................................................... ...................................................................................................................................... [2] © UCLES 2012 9702/23/M/J/12 16 BLANK PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © UCLES 2012 9702/23/M/J/12
Recommended
9702_s12_qp_52

9702_s12_qp_52

8 pages

9702_s12_qp_53

9702_s12_qp_53

8 pages

9702_s12_er

9702_s12_er

59 pages

9702_s12_qp_35

9702_s12_qp_35

12 pages

9702_s12_qp_43

9702_s12_qp_43

24 pages

9702_s12_qp_41

9702_s12_qp_41

24 pages

9702_s12_qp_42

9702_s12_qp_42

24 pages

9702_s12_qp_34

9702_s12_qp_34

12 pages

9702_s12_qp_21

9702_s12_qp_21

16 pages

9702_s12_qp_51

9702_s12_qp_51

8 pages

9702_s12_qp_22

9702_s12_qp_22

16 pages

9702_s12_qp_13

9702_s12_qp_13

24 pages

9702_s12_qp_33

9702_s12_qp_33

12 pages

9702_s12_qp_32

9702_s12_qp_32

12 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks