9702_s10_ms_21

Please download to get full document.

View again

of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information Report
Category:

Creative Writing

Published:

Views: 176 | Pages: 4

Extension: PDF | Download: 0

Share
Related documents
Description
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the May/June 2010 question paper for the…
Transcript
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level MARK SCHEME for the May/June 2010 question paper for the guidance of teachers 9702 PHYSICS 9702/21 Paper 2 (AS Structured Questions), maximum raw mark 60 This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners’ meeting before marking began, which would have considered the acceptability of alternative answers. Mark schemes must be read in conjunction with the question papers and the report on the examination. ã CIE will not enter into discussions or correspondence in connection with these mark schemes. CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses. Page 2 Mark Scheme: Teachers’ version Syllabus Paper GCE AS/A LEVEL – May/June 2010 9702 21 1 10–9 …………………………………………….…………..………….…………………........ B1 c …………………………………………….…………..………….………………………….. B1 mega ….……………………………………….…………..………….………………………. B1 tera …….……………………………………….…………..………….…………………….... B1 [4] 2 (a) scalar …………………………………………………………..………………………… B1 scalar …………………………………………………………..………………………… B1 vector …………………………………………………………..………………………… B1 [3] (b) (i) 1 gradient (of graph) is the speed/velocity (can be scored here or in 2)………. B1 initial gradient is zero …………………………………………………………… B1 [2] 2 gradient (of line/graph) becomes constant ……….……..…………………… B1 [1] (ii) speed = (2.8 ± 0.1) m s–1 ……… ………………………………………………… A2 [2] (if answer ±0.1 but ≤ ±0.2, then award 1 mark) (iii) curved line never below given line and starts from zero …..………………….. B1 continuous curve with increasing gradient …………………..…………………. B1 line never vertical or straight ………………………………..……………………. B1 [3] 3 (a) either energy (stored)/work done represented by area under graph or energy = average force × extension ………………………………………… B1 energy = ½ × 180 × 4.0 × 10–2 ……………………………………..………………… C1 = 3.6 J …………………………………………………………………………. A1 [3] (b) (i) either momentum before release is zero ………………………………………. M1 so sum of momenta (of trolleys) after release is zero …..……………. A1 or force = rate of change of momentum (M1) force on trolleys equal and opposite (A1) or impulse = change in momentum (M1) impulse on each equal and opposite (A1) [2] (ii) 1 M1V1 = M2V2 ……………..……………………………………..………………. B1 [1] 2 E = ½ M1V12+ ½ M2V22 ………………………………………………………… B1 [1] (iii) 1 EK = ½mv 2 and p = mv combined to give …………………………………… M1 EK = p 2 / 2m …………………………………………………………………….. A0 [1] 2 m smaller, EK is larger because p is the same/constant …………………… M1 so trolley B …..………………………………………………………………….. A0 [1] © UCLES 2010 Page 3 Mark Scheme: Teachers’ version Syllabus Paper GCE AS/A LEVEL – May/June 2010 9702 21 4 (a) when a wave (front) passes by/incident on an edge/slit ….…..…………………… M1 wave bends/spreads (into the geometrical shadow) …………..…………………… A1 [2] 38 (b) tan θ = 165 θ = 13° …………….………………………………..…………………………………… C1 d sin θ = nλ …………….………………………………..……….……………………… C1 d = 2.82 × 10–6 …………….……………………………….……………………………. C1 number = (1/d =) 3.6 × 105 ……………….……………………………………………. A1 [4] (c) P remains in same position …………………………………………………………… B1 X and Y rotate through 90° ……………………………………....……………………. B1 [2] (d) either screen not parallel to grating or grating not normal to (incident) light …………………………………………. B1 [1] 5 (a) region/area where a charge experiences a force ……………….………………….. B1 [1] (b) (i) left-hand sphere (+), right-hand sphere (–) ……………………..………………. B1 [1] (ii) 1 correct region labelled C within 10 mm of central part of plate otherwise within 5 mm of plate ………….…………………………………….. B1 [1] 2 correct region labelled D area of field not included for (b)(ii)1 …….………. B1 [1] (c) (i) arrows through P and N in correct directions …………………………………… B1 [1] (ii) torque = force × perpendicular distance (between forces) ….………………… C1 = 1.6 × 10–19 × 5.0 × 104 × 2.8 × 10 –10 × sin 30 = 1.1 × 10–24 N m …….…………….……………………………………… A1 [2] 6 (a) (i) P = VI …………………………..……………………………….…..……………… C1 60 = 12 × I I = 5.(0) A …………………………………………….…………………………… A1 [2] (ii) either V = IR or P = I 2R or P = V 2 / R ….………..………………. C1 either 12 = 5 × R or 60 = 52 × R or 60 = 122/R ….……….…………… M1 R = 2.4 Ω …………………………………………………………………………. A0 [2] (b) R = ρL/A …………………………..…………………………………………………….. C1 A = π × (0.4 × 10–3)2 (= 5.03 × 10–7) .…………..……………………………………… C1 L = (2.4 × 5.03 × 10–7)/(1.0 × 10–6) = 1.2 m …………..……………….……………………………………………………. A1 [3] (c) resistance is halved ……………………………….…………………………………… M1 either current is doubled or power ∝ 1/R ….……… ……………………………… M1 power is doubled …………………….……..…………………………………………… A1 [3] © UCLES 2010 Page 4 Mark Scheme: Teachers’ version Syllabus Paper GCE AS/A LEVEL – May/June 2010 9702 21 7 (a) nuclei/atoms with same proton number/atomic number …...………………………. B1 nuclei/atoms contain different numbers of neutrons/different atomic mass ..……. B1 [2] (b) (i) 92 …………………………………………………………………………………… A1 [1] (ii) 146 ………………………………..………………………………………………… A1 [1] (c) (i) mass = 238 × 1.66 × 10–27 …..……………………….…………………………… C1 = 3.95 × 10–25 kg ………………….………………………………………… A1 [2] 4 (ii) volume = π × (8.9 × 10–15)3 (= 2.95 × 10–42) ……..………………………… C1 3 density = (3.95 × 10–25)/(2.95 × 10–42) = 1.3 × 1017 kg m–3 ……………………………………………................ A1 [2] (d) nucleus contains most of mass of atom ……………………………………………… B1 either nuclear diameter/volume very much less than that of atom or atom is mostly (empty) space .......................................................…………… B1 [2] © UCLES 2010
Recommended
9702_s10_gt_2

9702_s10_gt_2

1 page

9702_s10_er_2

9702_s10_er_2

53 pages

9702_s10_ms_35

9702_s10_ms_35

4 pages

9702_s10_ms_42

9702_s10_ms_42

6 pages

9702_s10_ms_41

9702_s10_ms_41

5 pages

9702_s10_ms_43

9702_s10_ms_43

6 pages

9702_s10_ms_51

9702_s10_ms_51

4 pages

9702_s10_ms_31

9702_s10_ms_31

4 pages

9702_s10_ms_32

9702_s10_ms_32

4 pages

9702_s10_ms_33

9702_s10_ms_33

4 pages

9702_s10_ms_23

9702_s10_ms_23

4 pages

9702_s10_ms_34

9702_s10_ms_34

4 pages

9702_s10_ms_11

9702_s10_ms_11

2 pages

9702_s10_ms_13

9702_s10_ms_13

2 pages

9702_s10_ms_22

9702_s10_ms_22

4 pages

View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks
SAVE OUR EARTH

We need your sign to support Project to invent "SMART AND CONTROLLABLE REFLECTIVE BALLOONS" to cover the Sun and Save Our Earth.

More details...

Sign Now!

We are very appreciated for your Prompt Action!

x